Statistical methods for population and family-based whole-genome sequence data

基于人群和家系的全基因组序列数据的统计方法

基本信息

  • 批准号:
    9207476
  • 负责人:
  • 金额:
    $ 34.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-25 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Emerging sequencing technologies have made whole-genome sequencing become available for researches to study various phenotypes/diseases of interest, particularly focusing on rare variants sites. Although the first batch of sequencing projects has mainly focused on the analysis of unrelated individuals, numerous sequencing studies including related individuals have been carried out or launched recently as the sequencing cost reduces rapidly. However, the methodologies for analyzing family-based sequence data are largely falling behind partially due to the complexity of family structures and computational barrier. In this study, our primary goals are to efficiently and accurately infer individual genotypes and haplotypes - the key component of any sequencing project - by combining information from both family and population levels, and to study how differential sequencing errors will affect downstream association analysis. To achieve these goals, we propose specific aims as follows: 1) We will propose a novel statistical framework for genotyping calling and haplotype inference of sequence data including relative individuals. The new method takes advantages of both short stretches shared between unrelated individuals and long stretches shared between family members in a computationally feasible manner while retaining a high degree of accuracy via the synergy between two classic approaches: hidden Markov model (HMM) for linkage disequilibrium information and Lander-Green algorithm for inheritance vectors; 2) We will develop an exact algorithm for HMM computation to speed up a class of widely use genetics programs, including the method developed in Aim 1, without any sacrifice of accuracy; 3) We will assess the impact of sequencing errors on family-based association methods for rare variants and use the intrinsic stochastic nature of the proposed methods in Aim 1 to reduce the false positives under a framework of multiple imputation; 4) We will test and recalibrate our developed methods in collaboration with ongoing sequencing projects and systematically investigate different study designs. Successful completion of these aims will yield state-of-the-art statistical methods and software, which will facilitate the fast growing sequencing projects including family members and guide the design and analysis of future studies.
描述(由申请人提供): 新兴的测序技术使全基因组测序可供研究人员研究各种感兴趣的表型/疾病,特别是关注罕见的变异位点。虽然第一批测序项目主要集中在无关个体的分析上,但随着测序成本的迅速降低,包括相关个体在内的大量测序研究近期已经开展或启动。然而,由于家族结构的复杂性和计算障碍,分析基于家族的序列数据的方法在很大程度上落后。在这项研究中,我们的主要目标是通过结合来自家族和群体水平的信息,高效准确地推断个体基因型和单倍型(任何测序项目的关键组成部分),并研究差异测序错误将如何影响下游关联分析。为了实现这些目标,我们提出以下具体目标:1)我们将提出一种新颖的统计框架,用于包括相关个体的序列数据的基因分型调用和单倍型推断。新方法以计算上可行的方式利用了无关个体之间共享的短序列和家庭成员之间共享的长序列,同时通过两种经典方法之间的协同作用保持了高精度:用于连锁不平衡信息的隐马尔可夫模型(HMM)和用于遗传向量的Lander-Green算法; 2)我们将开发一种精确的 HMM 计算算法,以加速一类广泛使用的遗传学程序,包括目标 1 中开发的方法,而不会牺牲任何准确性; 3)我们将评估测序错误对罕见变异的基于家族的关联方法的影响,并利用目标1中提出的方法的内在随机性来减少多重插补​​框架下的误报; 4) 我们将与正在进行的测序项目合作测试和重新校准我们开发的方法,并系统地研究不同的研究设计。成功完成这些目标将产生最先进的统计方法和软件,这将促进包括家庭成员在内的快速发展的测序项目,并指导未来研究的设计和分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Chen其他文献

Wei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Chen', 18)}}的其他基金

An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
  • 批准号:
    10564824
  • 财政年份:
    2023
  • 资助金额:
    $ 34.03万
  • 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
  • 批准号:
    10714863
  • 财政年份:
    2023
  • 资助金额:
    $ 34.03万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10601180
  • 财政年份:
    2022
  • 资助金额:
    $ 34.03万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10665804
  • 财政年份:
    2022
  • 资助金额:
    $ 34.03万
  • 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
  • 批准号:
    10525401
  • 财政年份:
    2022
  • 资助金额:
    $ 34.03万
  • 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
  • 批准号:
    10414184
  • 财政年份:
    2022
  • 资助金额:
    $ 34.03万
  • 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
  • 批准号:
    10226322
  • 财政年份:
    2020
  • 资助金额:
    $ 34.03万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10043972
  • 财政年份:
    2020
  • 资助金额:
    $ 34.03万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10268184
  • 财政年份:
    2020
  • 资助金额:
    $ 34.03万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10463737
  • 财政年份:
    2020
  • 资助金额:
    $ 34.03万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了