Novel DNA Repair Inhibitors for Cancer Therapy

用于癌症治疗的新型 DNA 修复抑制剂

基本信息

  • 批准号:
    9388067
  • 负责人:
  • 金额:
    $ 77.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract. We seek to identify novel therapeutic agents that are selectively toxic to cancer cells and that specifically sensitize tumors to radiation or chemotherapy. We have discovered that a cell-penetrating, lupus-derived autoantibody (3E10) increases the sensitivity of cancer cells to radiation and to DNA-targeted chemotherapy. Importantly, 3E10, by itself, is synthetically lethal to BRCA2- and PTEN-deficient cancer cells, but is otherwise non-toxic to cells in culture or to mice. The antibody also showed no detectable toxicity in humans when tested in a phase I clinical trial in lupus patients as a putative anti-idiotype vaccine. We previously determined 3E10 to be a potent inhibitor of homology-dependent repair (HDR), and we have now identified RAD51 as the functional target. We have also found that 3E10 is preferentially taken up in tumor tissue in vivo based on its mechanism of cell penetration, providing a further basis to pursue its development for cancer therapy. These new results provide the basis to enhance the potency of 3E10 (by directed mutation, affinity maturation, and multi-valent constructs) and to rationally develop therapeutic strategies by identifying synthetic lethal interactions (via unbiased shRNA dropout screen and interrogation of curated cancer cell lines) and determining synergies with other agents, as a prelude to pre-clinical animal tumor studies. We expect that 3E10 will be synthetic lethal to cancers deficient in DNA repair and damage response pathways. We also have developed a strategy to selectively target DNA repair inhibitors to tumors by exploiting the acidic tumor microenvironment. We will use a pH low insertion peptide (pHLIP) that inserts directionally across cell membranes at low pH and delivers cargoes selectively into tumor cells in vivo. Focusing on DNA-PK in the non-homologous end-joining pathway (NHEJ) of DNA repair, we will build on advances made in collaborative work to develop tumor-targeted antisense and small molecule inhibition of DNA-PK. We will incorporate next generation γPNAs modified at the γ position to increase binding to RNA for potent antisense activity. This is based on our promising proof-of-concept studies published in Nature demonstrating the in vivo anti-tumor activity of pHLIP-PNA conjugates. We will also conjugate small molecule DNA-PK inhibitors to pHLIP, leveraging potent molecules that have not advanced to the clinic because of normal tissue toxicity, and conferring tumor selectivity. This work will provide a versatile platform to apply to other DNA repair targets. We have recently identified the oncometabolite, 2-hydroxyglutarate (2HG), as a new biomarker of deficient DNA repair in human malignancies. We found that elevated levels of 2HG confer a BRCAness phenotype of deficient HDR that renders cancer cells sensitive to synthetic lethal killing by PARP inhibitors and by 3E10. 2HG is produced by the neomorphic activity of isocitrate dehydrogenase-1 and -2 (IDH1/2) mutations found in gliomas, leukemia, and other cancers. We will investigate the mechanism by which 2HG suppresses DNA repair and identify vulnerabilities that can be exploited for therapeutic gain in human tumors.
项目总结/抽象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER M GLAZER其他文献

PETER M GLAZER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER M GLAZER', 18)}}的其他基金

PNA Nanoparticles for Gene Editing In Vivo
用于体内基因编辑的 PNA 纳米颗粒
  • 批准号:
    10198735
  • 财政年份:
    2019
  • 资助金额:
    $ 77.33万
  • 项目类别:
PNA Nanoparticles for Gene Editing In Vivo
用于体内基因编辑的 PNA 纳米颗粒
  • 批准号:
    9804726
  • 财政年份:
    2019
  • 资助金额:
    $ 77.33万
  • 项目类别:
PNA Nanoparticles for Gene Editing In Vivo
用于体内基因编辑的 PNA 纳米颗粒
  • 批准号:
    10414795
  • 财政年份:
    2019
  • 资助金额:
    $ 77.33万
  • 项目类别:
Poly(amine-co-ester)s for Targeted Delivery In Vivo of Gene Editing Agents to Bone Marrow and Lung
用于将基因编辑剂体内靶向递送至骨髓和肺的聚(胺-共酯)
  • 批准号:
    10274829
  • 财政年份:
    2018
  • 资助金额:
    $ 77.33万
  • 项目类别:
Poly(amine-co-ester)s for Targeted Delivery In Vivo of Gene Editing Agents to Bone Marrow and Lung
用于将基因编辑剂体内靶向递送至骨髓和肺的聚(胺-共酯)
  • 批准号:
    10706300
  • 财政年份:
    2018
  • 资助金额:
    $ 77.33万
  • 项目类别:
Poly(amine-co-ester)s for targeted delivery of gene editing agents to treat cystic fibrosis in animal models: SCGE Disease Models Studies Supplement
用于靶向递送基因编辑剂以治疗动物模型中的囊性纤维化的聚(胺共酯):SCGE 疾病模型研究补充
  • 批准号:
    10619840
  • 财政年份:
    2018
  • 资助金额:
    $ 77.33万
  • 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
  • 批准号:
    10204894
  • 财政年份:
    2017
  • 资助金额:
    $ 77.33万
  • 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
  • 批准号:
    10456727
  • 财政年份:
    2017
  • 资助金额:
    $ 77.33万
  • 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
  • 批准号:
    9981673
  • 财政年份:
    2017
  • 资助金额:
    $ 77.33万
  • 项目类别:
Yale Cancer Biology Training Grant
耶鲁大学癌症生物学培训补助金
  • 批准号:
    10170726
  • 财政年份:
    2016
  • 资助金额:
    $ 77.33万
  • 项目类别:

相似海外基金

The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
  • 批准号:
    10678248
  • 财政年份:
    2023
  • 资助金额:
    $ 77.33万
  • 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
  • 批准号:
    10681939
  • 财政年份:
    2023
  • 资助金额:
    $ 77.33万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10427574
  • 财政年份:
    2022
  • 资助金额:
    $ 77.33万
  • 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
  • 批准号:
    10609909
  • 财政年份:
    2022
  • 资助金额:
    $ 77.33万
  • 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
  • 批准号:
    10607392
  • 财政年份:
    2022
  • 资助金额:
    $ 77.33万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10675646
  • 财政年份:
    2022
  • 资助金额:
    $ 77.33万
  • 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
  • 批准号:
    457552
  • 财政年份:
    2021
  • 资助金额:
    $ 77.33万
  • 项目类别:
    Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
  • 批准号:
    10331361
  • 财政年份:
    2020
  • 资助金额:
    $ 77.33万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10623306
  • 财政年份:
    2020
  • 资助金额:
    $ 77.33万
  • 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
  • 批准号:
    10376866
  • 财政年份:
    2020
  • 资助金额:
    $ 77.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了