A Statistical Framework for the Spectral Analysis of High-Dimensional Physiological Time Series Signals
高维生理时间序列信号频谱分析的统计框架
基本信息
- 批准号:9752573
- 负责人:
- 金额:$ 35.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-10 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAutonomic nervous systemBayesian ModelingBiologicalBiological ProcessBlood PressureBrainBrain regionCharacteristicsCollectionComplexCouplingCritical CareDataDiagnosisDimensionsDiseaseElectroencephalographyElectrophysiology (science)EventFoundationsFutureGaitGoalsGrantHealthHeartHospitalsLeadLocomotionMeasuresMethodsModelingModernizationMonitorMovementNatureObservational StudyOnset of illnessPathway interactionsPatient CarePatientsPatternPerformancePhysical activityPhysiologicalPreventionProceduresPropertyResearchResearch DesignResearch PersonnelRespirationSamplingSchemeSeminalSeriesSignal TransductionSleepStatistical MethodsStructureSystemTechniquesTimeWorkactigraphydensityflexibilityfoothigh dimensionalityinnovationinterestmultidimensional datanovelpressuresensorsimulationtooluser friendly softwarevalidation studies
项目摘要
Abstract
A wide range of researchers record physiological signals over time. These signals contain dynamic information
about important biological processes, a deeper understanding of which is essential for advancing preventions,
diagnoses and treatments of disease. The complex nature of physiological time series signals, which are inher-
ently nonstationary and where biological interest often lies in oscillatory patterns, presents challenges for their
analysis. These challenges are exacerbated in modern studies, where researchers often record a large number
of signals simultaneously. Simultaneous analyses of such data that take into account cross-signal relations is
essential to obtaining a comprehensive understanding of complex biological pathways. Researchers' ability to
fully utilize the information contained in these data is currently hindered by a dearth of formal statistical methods
for the spectral analysis of high-dimensional nonstationary time series under modern study designs. The broad
goal of this research is to develop a framework of scalable methods for the adaptive spectral analysis of non-
stationary high-dimensional time series. The framework will introduce a novel spectral domain factor structure
to overcome the high-dimensionality of the data and will be formulated in a Bayesian framework that can flexibly
adapt to the dynamics of the data. Specific aims will establish three aspects within this framework: (1) estimation
and inference for a high-dimensional time-varying power spectrum, (2) analysis of associations between high-
dimensional time-varying power spectra and biological covariates, and (3) using high-dimensional time-varying
spectra to predict future events. For each aspect, we will formulate a novel model and explore its properties,
create a sampling scheme for estimation and inference using advanced Monte Carlo techniques, develop user
friendly software, and compare empirical performance to that of existing approaches in simulation and validation
studies. The framework will be used to analyze data from three studies: an observational study of signals col-
lected across systemic physiological systems in critical care patients, a study of nocturnal high-density EEG, and
a study of physiological systems involved in regulating locomotion.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert T Krafty其他文献
Robert T Krafty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert T Krafty', 18)}}的其他基金
A Statistical Framework for the Spectral Analysis of Electrophysiology
电生理学频谱分析的统计框架
- 批准号:
8825702 - 财政年份:2014
- 资助金额:
$ 35.84万 - 项目类别:
A Statistical Framework for the Spectral Analysis of High-Dimensional Physiological Time Series Signals
高维生理时间序列信号频谱分析的统计框架
- 批准号:
10345875 - 财政年份:2014
- 资助金额:
$ 35.84万 - 项目类别:
A Statistical Framework for the Spectral Analysis of Electrophysiology
电生理学频谱分析的统计框架
- 批准号:
8904690 - 财政年份:2014
- 资助金额:
$ 35.84万 - 项目类别:
相似海外基金
Free-living and in-lab effects of sedentary time on cardiac autonomic nervous system function in youth with overweight/obesity
久坐时间对超重/肥胖青少年心脏自主神经系统功能的自由生活和实验室影响
- 批准号:
10598404 - 财政年份:2023
- 资助金额:
$ 35.84万 - 项目类别:
Assessment of Autonomic Nervous System Function in Post-Acute Sequelae of COVID-19 (PASC) and Characterization of the Patient Experience
COVID-19 急性后遗症 (PASC) 的自主神经系统功能评估和患者体验特征
- 批准号:
480723 - 财政年份:2023
- 资助金额:
$ 35.84万 - 项目类别:
Comprehensive research to elucidate the diversity and dispersibility of the autonomic nervous system
阐明自主神经系统多样性和分散性的综合研究
- 批准号:
23H00422 - 财政年份:2023
- 资助金额:
$ 35.84万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Relationship of autonomic nervous system function on functional brain networks during normal drinking and abstinence in daily drinkers
日常饮酒者正常饮酒和戒酒时自主神经系统功能与功能性脑网络的关系
- 批准号:
10540603 - 财政年份:2022
- 资助金额:
$ 35.84万 - 项目类别:
The Acute Effects of Cannabis and Cannabinoids on Human Cardiovascular Physiology: Understanding Contributing Mechanisms in the Myocardium, Peripheral Vasculature, and Autonomic Nervous System.
大麻和大麻素对人类心血管生理学的急性影响:了解心肌、外周脉管系统和自主神经系统的贡献机制。
- 批准号:
548126-2020 - 财政年份:2022
- 资助金额:
$ 35.84万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Role of "motivation" neurons in regulating autonomic nervous system function
“动机”神经元在调节自主神经系统功能中的作用
- 批准号:
22K19709 - 财政年份:2022
- 资助金额:
$ 35.84万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Verification of the effectiveness of neck and shoulder warm compresses in improving stiffness symptoms, psychological symptoms, and autonomic nervous system balance.
验证颈肩部热敷对改善僵硬症状、心理症状和自主神经系统平衡的有效性。
- 批准号:
22K17447 - 财政年份:2022
- 资助金额:
$ 35.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Autonomic Nervous System Functioning in Heavy Drinking Adolescents: Interactions with sleep, circadian functioning, and health
酗酒青少年的自主神经系统功能:与睡眠、昼夜节律功能和健康的相互作用
- 批准号:
10201841 - 财政年份:2021
- 资助金额:
$ 35.84万 - 项目类别:
Reconstruction of the concept of autonomic nervous system by developing innovative technology
开发创新技术重建自主神经系统概念
- 批准号:
21K18269 - 财政年份:2021
- 资助金额:
$ 35.84万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
The Acute Effects of Cannabis and Cannabinoids on Human Cardiovascular Physiology: Understanding Contributing Mechanisms in the Myocardium, Peripheral Vasculature, and Autonomic Nervous System.
大麻和大麻素对人类心血管生理学的急性影响:了解心肌、外周脉管系统和自主神经系统的贡献机制。
- 批准号:
548126-2020 - 财政年份:2021
- 资助金额:
$ 35.84万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




