Illuminating molecular targetable pathways in HNSCC
阐明 HNSCC 的分子靶向途径
基本信息
- 批准号:9753710
- 负责人:
- 金额:$ 48.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAntibodiesBiochemicalBiochemical GeneticsBioinformaticsBiological AssayCandidate Disease GeneCell Culture TechniquesCell SurvivalCellsCetuximabCharacteristicsClinicalClinical TrialsComputer SimulationComputing MethodologiesDataData AnalysesData SetDevelopmentDiseaseDoseDrug CombinationsDrug TargetingEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEtiologyEvaluationExperimental ModelsFDA approvedFailureFundingFutureGene AbnormalityGene TargetingGenesGeneticGenomicsGoalsHead and Neck CancerHead and Neck Squamous Cell CarcinomaHumanIn SituIn Situ HybridizationIn VitroLarynxLegal patentLightMalignant Epithelial CellMalignant NeoplasmsMathematicsMolecularMolecular AnalysisMolecular GeneticsMolecular TargetMusMutagenesisMutationNational Cancer InstituteNew AgentsOperative Surgical ProceduresOral cavityOutcomePathway interactionsPatientsPharmaceutical PreparationsPharyngeal structurePrevalenceProteinsQuality of lifeRNARadiationResistanceSamplingSiteSourceSurvival RateTestingThe Cancer Genome AtlasTherapeuticTissuesTreatment EfficacyXenograft Modelbasebioinformatics toolchemotherapycomputerized toolsdesigndrug developmentdrug efficacydrug testingeffective therapyepigenomicsexperimental studyfollow-upgenetic approachgenomic datahuman diseasehumanized antibodyimprovedin vivoindividualized medicineinhibitor/antagonistinnovationknock-downleukemiamolecular targeted therapiesneoplastic cellnovel strategiesoff-patentpre-clinicalprecision medicinepredictive testpreservationpublic health relevancereconstitutionrepositoryresponsesmall molecule inhibitorsuccesstargeted agenttargeted treatmenttooltranscriptome sequencingtumor
项目摘要
DESCRIPTION (provided by applicant): We propose to better employ existing drugs to define new agents and combinations of agents to treat HNSCC, a disease with unchanged survival rates for four decades in need of new approaches, tools and perspectives. To do so we will combine the advantages of the large dataset in The Cancer Genome Atlas (TCGA) containing genomics, epigenomics and basic outcomes data but including little functional information to support causality in the disease or its treatment efficacy, with a well annotated clinical dataset that uniquely includes functional information on the sensitivity of HNSCC patient tumor cells to a panel of drugs approved or under development for human diseases but not yet applied to HNSCC. Using cutting-edge computational methods, we will mine the TCGA dataset in terms of aberrational gene pathway networks, prioritizing their relevance to HNSCC. We are taking advantage of a high throughput inhibitor assay and computational tools originally showing success in leukemia to design and employ HNSCC-specific inhibitor panels that capture the diversity of aberrational pathways in TCGA to test viable cells from patients' HNSCC tumors to predict effective targeted therapeutic agents and identify the reasons for differential response or
resistance to certain drugs among patients. Our dual-PI expertise encompasses creating and using tools of cross-platform data analysis and precision medicine (McWeeney) and repository and specialized cell culture design, biochemical and molecular analysis and orthotopic xenograft models (Kulesz-Martin). Our preliminary results show convergence of pathways and targets from functional analysis of our OHSU dataset with those highly significant from TCGA data, in which 73 pathways are represented on the initial ~120 drug panel, and another 121 pathways, which we call "dark", are not represented. The dark pathways offer a source of innovative targets for creation of a HNSCC-specific inhibitor panel. Our preliminary data show 15 drugs that reach thresholds of efficacy in 7 cases tested. Our preliminary analyses of TCGA with our HNSCC patient datasets annotated by RNASeq and functionally by inhibitor assay identified differential responses to EGFR inhibitors, PI3K inhibitors and other targeted agents. Cases where single agents were ineffective were sensitive to drug combinations with EGFR inhibitors. We propose to pursue more effective therapies for HNSCC as follows: 1) Perform complementary analysis of TCGA data with -omics and functional data on OHSU HNSCC patients' cells to develop HNSCC-specific inhibitor panels and more effectively apply available drugs to HNSCC treatment, and to illuminate "dark pathways" as a source of new targets; 2) Prioritize targets computationally, taking advantage of state-of-the-art bioinformatics tools for cross-platform analysis of TCGA and OHSU data, and validate these in vitro as responsible for patient tumor cell-specific drug (in)sensitivities; and 3) Test predictions in situ in original patent tumors and in vivo using orthotopic xenograft models, relating results to clinical outcomes to define subsets of HNSCC for future molecular predictive tests and tailoring treatment to patient tumor characteristics.
描述(由申请人提供):我们建议更好地利用现有药物来定义治疗HNSCC的新药物和药物组合,HNSCC是一种四十年来生存率不变的疾病,需要新的方法,工具和观点。为此,我们将联合收割机结合癌症基因组图谱(TCGA)中大型数据集的优势,该数据集包含基因组学、表观基因组学和基本结果数据,但几乎不包含支持疾病因果关系或其治疗疗效的功能信息,具有良好注释的临床数据集,该数据集唯一地包括关于HNSCC患者肿瘤细胞对一组已批准或正在开发的用于人类的药物的敏感性的功能信息。疾病,但尚未应用于HNSCC。使用尖端的计算方法,我们将在异常基因通路网络方面挖掘TCGA数据集,优先考虑它们与HNSCC的相关性。我们正在利用最初在白血病中显示成功的高通量抑制剂测定和计算工具来设计和采用HNSCC特异性抑制剂组,其捕获TCGA中异常途径的多样性,以测试来自患者的HNSCC肿瘤的活细胞,从而预测有效的靶向治疗剂,并确定差异反应或特异性抑制剂的原因。
患者对某些药物的耐药性。我们的双PI专业知识包括创建和使用跨平台数据分析和精准医学(McWeeney)以及存储库和专业细胞培养设计,生化和分子分析以及原位异种移植模型(Kulesz-Martin)的工具。我们的初步结果显示,我们的OHSU数据集的功能分析的途径和靶点与TCGA数据中高度显著的途径和靶点的收敛,其中73条途径在初始~120种药物面板上表示,另外121条途径,我们称之为“暗”,没有表示。暗通路为创建HNSCC特异性抑制剂组提供了创新靶点的来源。我们的初步数据显示,15种药物在7个测试病例中达到了疗效阈值。我们对TCGA与我们的HNSCC患者数据集的初步分析通过RNASeq注释,并通过抑制剂测定在功能上鉴定了对EGFR抑制剂、PI 3 K抑制剂和其他靶向药物的差异反应。单一药物无效的病例对EGFR抑制剂联合用药敏感。我们建议对HNSCC进行更有效的治疗,具体如下:1)对TCGA数据与OHSU HNSCC患者细胞的组学和功能数据进行互补分析,以开发HNSCC特异性抑制剂组,并更有效地将可用药物应用于HNSCC治疗,并阐明“黑暗通路”作为新靶点的来源; 2)利用最先进的生物信息学工具对TCGA和OHSU数据进行跨平台分析,在计算上对靶点进行优先级排序,并在体外验证这些靶点对患者肿瘤细胞特异性药物敏感性的影响;和3)使用原位异种移植物模型在原始专利肿瘤中原位和体内测试预测,将结果与临床结果相关联以定义HNSCC的子集用于未来的分子预测测试和针对患者肿瘤特征定制治疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
IL-10 and integrin signaling pathways are associated with head and neck cancer progression.
- DOI:10.1186/s12864-015-2359-6
- 发表时间:2016-01-08
- 期刊:
- 影响因子:4.4
- 作者:Bornstein S;Schmidt M;Choonoo G;Levin T;Gray J;Thomas CR Jr;Wong M;McWeeney S
- 通讯作者:McWeeney S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shannon K. McWeeney其他文献
Characterize Biomarkers and Mechanisms of Resistance for MDM2 Inhibitors in AML
- DOI:
10.1182/blood-2022-157622 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Lindsey Savoy;Daniel Bottomly;Reid Chen;Basil Allen;Jeffrey W. Tyner;Shannon K. McWeeney;Haijiao Zhang - 通讯作者:
Haijiao Zhang
Utilizing cohort-level and individual networks to predict best response in patients with metastatic triple negative breast cancer
利用队列水平和个体网络来预测转移性三阴性乳腺癌患者的最佳反应
- DOI:
10.1038/s41698-025-00959-w - 发表时间:
2025-06-13 - 期刊:
- 影响因子:8.000
- 作者:
Daniel Bottomly;Christina Zheng;Allison L. Creason;Zahi I. Mitri;Gordon B. Mills;Shannon K. McWeeney - 通讯作者:
Shannon K. McWeeney
The Aryl Hydrocarbon Receptor Defines a Unique Genomic and Immune Signature in AML Characterized By Monocytic Differentiation, Venetoclax Resistance and Is Targetable By Ahr Antagonist
- DOI:
10.1182/blood-2022-163166 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Jennifer N. Saultz;Daniel Bottomly;Faith Burns;Kaelan Byrd;Yoko Kosaka;Shannon K. McWeeney;Stephen E. Kurtz;Guang Fan;Andy Kaempf;Karen McGovern;Lei Wang;Marta Sanchez-Martin;Dan S Kaufman;Evan F. Lind;Jeffrey W. Tyner - 通讯作者:
Jeffrey W. Tyner
Defining Clinical and Molecular Biomarkers for Venetoclax-Based Drug Combinations to Augment AML Therapy
定义基于维奈托克的药物组合以增强 AML 治疗的临床和分子生物标志物
- DOI:
10.1182/blood-2022-159264 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:23.100
- 作者:
Christopher A. Eide;Stephen E. Kurtz;Andy Kaempf;Nicola Long;Sunil K Joshi;Tamilla Nechiporuk;Ariane Huang;Charles Dibb;Daniel Bottomly;Shannon K. McWeeney;Bill H. Chang;Brian J. Druker;Jeffrey W. Tyner - 通讯作者:
Jeffrey W. Tyner
Shannon K. McWeeney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shannon K. McWeeney', 18)}}的其他基金
Genomics, Biostatistics and Bioinformatics Core
基因组学、生物统计学和生物信息学核心
- 批准号:
10216632 - 财政年份:2017
- 资助金额:
$ 48.94万 - 项目类别:
Genomics, Biostatistics and Bioinformatics Core
基因组学、生物统计学和生物信息学核心
- 批准号:
9980279 - 财政年份:2017
- 资助金额:
$ 48.94万 - 项目类别:
ELECTRONIC DISSEMINATION OF HEMATOLOGIC CANCER SURVIVORSHIP MATERIALS WITH APPLIC
通过应用程序电子传播血液癌症幸存者材料
- 批准号:
7673877 - 财政年份:2007
- 资助金额:
$ 48.94万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 48.94万 - 项目类别:
Research Grant














{{item.name}}会员




