C-PAC: A configurable, compute-optimized, cloud-enabled neuroimaging analysis software for reproducible translational and comparative

C-PAC:一种可配置、计算优化、支持云的神经影像分析软件,用于可重复的转化和比较

基本信息

  • 批准号:
    9766371
  • 负责人:
  • 金额:
    $ 54.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT The BRAIN Initiative is designed to leverage sophisticated neuromodulation, electrophysiological recording, and macroscale neuroimaging techniques in human and non-human animal models in order to develop a multilevel understanding of human brain function. However, the necessary tools for organizing, processing and analyzing neuroimaging data generated through these efforts are not widely available as coherent and easy-to- use software packages. Gaps are particularly apparent for nonhuman data (i.e., monkey, rodent), as most of the existing processing and analytic software packages are specifically designed for human imaging. Methods have been proposed for addressing the challenges inherent to the processing of nonhuman data (e.g., brain extraction, tissue segmentation, spatial normalization, brain parcellation, temporal denoising); to date, these have not been readily integrated into an easy-to-use, robust, and reproducible analysis package. Similarly, many of the sophisticated machine learning and modeling methods developed for neuroimaging analyses are inaccessible to most researchers because they have not been integrated into easy-to-use pipeline software. As a result, translational and comparative neuroimaging researchers patch together neuroinformatics pipelines that use various combinations of disparate software packages and in-house code. We propose to extend the Configurable Pipeline for the Analysis of Connectomes (C-PAC) open-source software to provide robust and reproducible pipelines for functional and structural MRI data. We will integrate the various disparate image processing and analysis methods used to handle the challenges of nonhuman imaging data, into a single, open source, configurable, easy-to-use end-to-end analysis pipeline package that is accessible locally or via the cloud. The end product will not only improve the quality, transparency and reproducibility of nonhuman translational and comparative imaging, but also enable new avenues of scientific inquiry through our inclusion of methods that are yet to be applied to nonhuman imaging data (e.g., gradient- based cortical parcellation methods, hyperalignment). Specific aims of the proposed work include to: 1) Integrate neuroimaging processing and analysis methods optimized for BRAIN Initiative data, 2) Implement strategies for carrying out comparative studies of human and non-human populations, and 3) Extend C-PAC to include cutting-edge analytical strategies for identifying mechanisms of brain function. All development will occur “in the open” using GitHub and other collaborative tools to maximally involve participation in the C-PAC project. Annual hackathons will be held to collaborate with investigators from BRAIN Initiative awards and other neuroinformatics development projects to integrate their tools with C-PAC. Hands-on training will be held to train investigators on optimal use of the newly developed tools.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Cameron Craddock其他文献

Richard Cameron Craddock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Cameron Craddock', 18)}}的其他基金

C-PAC: A configurable, compute-optimized, cloud-enabled neuroimaging analysis software for reproducible translational and comparative
C-PAC:一种可配置、计算优化、支持云的神经影像分析软件,用于可重复的转化和比较
  • 批准号:
    9894275
  • 财政年份:
    2018
  • 资助金额:
    $ 54.56万
  • 项目类别:
Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation
基于实时功能磁共振成像神经反馈的默认网络调节分层
  • 批准号:
    9113698
  • 财政年份:
    2013
  • 资助金额:
    $ 54.56万
  • 项目类别:
Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation
基于实时功能磁共振成像神经反馈的默认网络调节分层
  • 批准号:
    8849978
  • 财政年份:
    2013
  • 资助金额:
    $ 54.56万
  • 项目类别:
Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation
基于实时功能磁共振成像神经反馈的默认网络调节分层
  • 批准号:
    8574082
  • 财政年份:
    2013
  • 资助金额:
    $ 54.56万
  • 项目类别:
Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation
基于实时功能磁共振成像神经反馈的默认网络调节分层
  • 批准号:
    8705608
  • 财政年份:
    2013
  • 资助金额:
    $ 54.56万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 54.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 54.56万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 54.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 54.56万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 54.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 54.56万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 54.56万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 54.56万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 54.56万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 54.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了