C-PAC: A configurable, compute-optimized, cloud-enabled neuroimaging analysis software for reproducible translational and comparative
C-PAC:一种可配置、计算优化、支持云的神经影像分析软件,用于可重复的转化和比较
基本信息
- 批准号:9894275
- 负责人:
- 金额:$ 2.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAnatomyAnimal ModelArchitectureAwardBehaviorBrainBrain imagingCapitalCodeCommunitiesComparative StudyComputer softwareConsumptionDataData AnalysesData SetDevelopmentDocumentationElectrodesElectrophysiology (science)EnvironmentFundingHigh Performance ComputingHumanImageImage AnalysisIndividualLearningLinkLocationMachine LearningMagnetic Resonance ImagingMaintenanceMeasuresMethodsModelingModificationMonkeysOutcomeOutputPatternPersonsPhenotypePopulationProcessPythonsReadabilityReproducibilityResearch PersonnelRodentScientific InquirySoftware DesignStatistical MethodsStructureTechniquesTestingTextTimeTissuesTrainingUnited States National Institutes of HealthValidity of ResultsWorkanalysis pipelineanimal databasebrain researchcloud basedcomparativecomputing resourcesconnectomecostdata sharingdata structuredenoisingdesignflexibilitygraphical user interfacehackathonhuman imagingimage processingimprovedinnovative neurotechnologiesinvestigator traininglearning strategymultimodalityneuroimagingneuroinformaticsneuroregulationopen sourcesoftware as a servicesupervised learningtoolunsupervised learning
项目摘要
ABSTRACT
The BRAIN Initiative is designed to leverage sophisticated neuromodulation, electrophysiological recording,
and macroscale neuroimaging techniques in human and non-human animal models in order to develop a
multilevel understanding of human brain function. However, the necessary tools for organizing, processing and
analyzing neuroimaging data generated through these efforts are not widely available as coherent and easy-to-
use software packages. Gaps are particularly apparent for nonhuman data (i.e., monkey, rodent), as most of
the existing processing and analytic software packages are specifically designed for human imaging. Methods
have been proposed for addressing the challenges inherent to the processing of nonhuman data (e.g., brain
extraction, tissue segmentation, spatial normalization, brain parcellation, temporal denoising); to date, these
have not been readily integrated into an easy-to-use, robust, and reproducible analysis package. Similarly,
many of the sophisticated machine learning and modeling methods developed for neuroimaging analyses are
inaccessible to most researchers because they have not been integrated into easy-to-use pipeline software. As
a result, translational and comparative neuroimaging researchers patch together neuroinformatics pipelines
that use various combinations of disparate software packages and in-house code.
We propose to extend the Configurable Pipeline for the Analysis of Connectomes (C-PAC) open-source
software to provide robust and reproducible pipelines for functional and structural MRI data. We will integrate
the various disparate image processing and analysis methods used to handle the challenges of nonhuman
imaging data, into a single, open source, configurable, easy-to-use end-to-end analysis pipeline package that
is accessible locally or via the cloud. The end product will not only improve the quality, transparency and
reproducibility of nonhuman translational and comparative imaging, but also enable new avenues of scientific
inquiry through our inclusion of methods that are yet to be applied to nonhuman imaging data (e.g., gradient-
based cortical parcellation methods, hyperalignment). Specific aims of the proposed work include to: 1)
Integrate neuroimaging processing and analysis methods optimized for BRAIN Initiative data, 2) Implement
strategies for carrying out comparative studies of human and non-human populations, and 3) Extend C-PAC to
include cutting-edge analytical strategies for identifying mechanisms of brain function. All development will
occur “in the open” using GitHub and other collaborative tools to maximally involve participation in the C-PAC
project. Annual hackathons will be held to collaborate with investigators from BRAIN Initiative awards and other
neuroinformatics development projects to integrate their tools with C-PAC. Hands-on training will be held to
train investigators on optimal use of the newly developed tools.
摘要
大脑计划旨在利用复杂的神经调制、电生理记录、
以及在人类和非人类动物模型中的宏观神经成像技术,以开发
对人脑功能的多层次了解。然而,组织、处理和管理所需的工具
分析通过这些努力产生的神经成像数据并不是广泛可用的连贯和易于-
使用软件包。对于非人类数据(即猴子、啮齿动物)来说,差距尤其明显,因为大多数
现有的处理和分析软件包是专门为人体成像设计的。方法
已经提出了用于解决处理非人类数据(例如,大脑)所固有的挑战
提取、组织分割、空间归一化、大脑分割、时间去噪);迄今为止,这些
还没有容易地集成到易于使用、健壮和可重现的分析包中。同样,
为神经成像分析开发的许多复杂的机器学习和建模方法包括
大多数研究人员无法访问,因为它们尚未集成到易于使用的管道软件中。AS
结果,翻译和比较神经成像研究人员将神经信息学管道拼凑在一起
使用不同的软件包和内部代码的各种组合。
我们建议扩展可配置管道来分析连接(C-PAC)开源
软件,为功能和结构MRI数据提供健壮且可重现的管道。我们将整合
用于应对非人类挑战的各种不同的图像处理和分析方法
将数据映像到单个开源、可配置、易于使用的端到端分析流水线包中,
可在本地或通过云访问。最终的产品不仅将提高质量、透明度和
非人类翻译和比较成像的重复性,但也使科学的新途径
通过我们将尚未应用于非人类成像数据的方法(例如,梯度-
基于皮质分割方法、超对齐)。拟议工作的具体目标包括:1)
集成针对大脑计划数据进行优化的神经成像处理和分析方法,2)实施
对人类和非人类群体进行比较研究的战略,以及3)将C-PAC扩展到
包括用于识别大脑功能机制的尖端分析策略。所有发展都将
使用GitHub和其他协作工具以最大限度地参与C-PAC
项目。一年一度的黑客马拉松将与Brain Initiative Awards和其他机构的调查人员合作
神经信息学开发项目,将其工具与C-PAC集成。将举办动手培训,以
对调查人员进行培训,使他们了解如何优化使用新开发的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Cameron Craddock其他文献
Richard Cameron Craddock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Cameron Craddock', 18)}}的其他基金
C-PAC: A configurable, compute-optimized, cloud-enabled neuroimaging analysis software for reproducible translational and comparative
C-PAC:一种可配置、计算优化、支持云的神经影像分析软件,用于可重复的转化和比较
- 批准号:
9766371 - 财政年份:2018
- 资助金额:
$ 2.31万 - 项目类别:
Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation
基于实时功能磁共振成像神经反馈的默认网络调节分层
- 批准号:
9113698 - 财政年份:2013
- 资助金额:
$ 2.31万 - 项目类别:
Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation
基于实时功能磁共振成像神经反馈的默认网络调节分层
- 批准号:
8849978 - 财政年份:2013
- 资助金额:
$ 2.31万 - 项目类别:
Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation
基于实时功能磁共振成像神经反馈的默认网络调节分层
- 批准号:
8574082 - 财政年份:2013
- 资助金额:
$ 2.31万 - 项目类别:
Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation
基于实时功能磁共振成像神经反馈的默认网络调节分层
- 批准号:
8705608 - 财政年份:2013
- 资助金额:
$ 2.31万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 2.31万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 2.31万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 2.31万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 2.31万 - 项目类别:
Standard Grant