Motion-Resolved, Comprehensive Quantitative Tissue Characterization Using MR Multitasking
使用 MR 多任务处理进行运动解析、全面的定量组织表征
基本信息
- 批准号:9766063
- 负责人:
- 金额:$ 67.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAlgorithmsArrhythmiaArtificial IntelligenceBlood flowBreathingCancer PatientCardiacCardiovascular DiseasesCardiovascular systemClinicalCollectionConsumptionDataDevelopmentDiagnosisDiffuseDiffusionDimensionsDiseaseEarly DiagnosisEdemaElectrocardiogramFibrosisHemorrhageImageIronJointsLeadLipidsLiverLongitudinal StudiesMachine LearningMagnetic Resonance ImagingMagnetismMalignant neoplasm of prostateMapsMeasurementMeasuresMethodsModelingMonitorMorphologic artifactsMotionNatureNeurologicOrganPatientsPhysiologicalPositioning AttributePredispositionProcessPropertyRecoveryReproducibilityResearchResearch PersonnelRespirationRisk AssessmentScanningSeriesSignal TransductionSourceStagingSystemTechnologyTestingTimeTissue imagingTissuesValidationbody systemdeep learningheart motionimage reconstructionmagnetic fieldmagnetohydrodynamicmathematical modelmultitasknew technologyprospectivequantitative imagingreconstructionrespiratorytime usetissue biomarkerstool
项目摘要
PROJECT SUMMARY
Quantitative magnetic resonance imaging (MRI) measures tissue parameters such as T1, T2, T2*, and
diffusion to detect subtle differences in tissue states (such as microstructure, diffuse fibrosis, edema,
hemorrhage, and iron content) from neurological, oncological, and cardiovascular diseases. Because each
parameter offers complementary tissue information, multiparameter mapping is very promising for risk
assessment, early detection, accurate staging, and treatment monitoring of disease. However, quantitative MRI
is typically very time consuming and difficult to perform. Each parameter is typically measured from its own
series of images, so measuring multiple parameters leads to long, inefficient scanning sessions. Furthermore,
cardiac and breathing motion creates misalignment between images, causing additional problems.
The standard approach to motion is to either remove it (e.g., ask the patient to hold their breath) or to
synchronize image acquisition with it (e.g., using electrocardiography (ECG) to monitor cardiac motion). This
approach makes scan times even longer, limits imaging to patients who can repeatedly perform long breath
holds (which is difficult for aging or weak patients) and who have predictable cardiac motion (which is not true
of patients with cardiac arrhythmias). Furthermore, these methods are often unreliable and difficult to perform.
This project is to develop and validate a new technology, MR Multitasking, to perform multiple
simultaneous measurements in a single, push-button scan that is both comfortable for patients and simple for
technologists to perform. MR Multitasking redesigns quantitative MRI around the concept of images as
functions of many time dimensions, each corresponding to a different dynamic process (e.g., motion, T1, T2,
T2*, and diffusion), and then uses mathematical models called low-rank tensors to perform fast,
multidimensional imaging. This allows continuous acquisition of imaging data even while the subject is moving,
providing motion-resolved parameter maps without breath holding or motion synchronization. We will scan
healthy subjects, liver patients, prostate cancer patients, and cardiovascular patients to develop and validate
this technology and use artificial intelligence to quickly reconstruct images from the collected data. The
resulting tool will be applicable to any organ system, offering clinicians and investigators a valuable tool to
answer a wide range of biomedical questions.
项目摘要
定量磁共振成像(MRI)测量组织参数,例如T1、T2、T2 * 和
扩散以检测组织状态(例如微结构,扩散纤维化,水肿,
出血和铁含量)。因为每个
参数提供了补充的组织信息,多参数标测非常有希望用于风险
评估、早期发现、准确分期和疾病治疗监测。然而,定量MRI
通常非常耗时并且难以执行。每个参数通常从其自身的
由于需要一系列图像,因此测量多个参数会导致扫描时间过长且效率低下。此外,委员会认为,
心脏和呼吸运动在图像之间产生不对准,从而引起额外的问题。
运动的标准方法是将其移除(例如,要求患者屏住呼吸)或
使图像采集与之同步(例如,使用心电图(ECG)来监测心脏运动)。这
这种方法使扫描时间更长,限制了可以重复进行长呼吸的患者的成像
保持(这对于年老或虚弱的患者来说是困难的),并且具有可预测的心脏运动(这是不正确的
心律失常患者)。此外,这些方法通常不可靠且难以执行。
该项目旨在开发和验证一种新技术,MR多任务处理,
在单个按钮扫描中同时进行测量,这对患者来说既舒适又简单,
技术人员执行。MR多任务处理围绕图像概念重新设计定量MRI,
许多时间维度的函数,每个对应于不同的动态过程(例如,运动T1 T2
T2 * 和扩散),然后使用称为低秩张量的数学模型来快速执行,
多维成像这允许即使在对象移动时也连续采集成像数据,
提供运动分辨的参数图而无需屏气或运动同步。我们将扫描
健康受试者、肝脏患者、前列腺癌患者和心血管患者进行开发和验证
这项技术并使用人工智能从收集的数据中快速重建图像。的
由此产生的工具将适用于任何器官系统,为临床医生和研究人员提供一个有价值的工具,
回答一系列生物医学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony G Christodoulou其他文献
Multicontrast 3D automated segmentation of cardiovascular images
- DOI:
10.1186/1532-429x-18-s1-o114 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Matthew Bramlet;Anthony G Christodoulou;Brad Sutton - 通讯作者:
Brad Sutton
Anthony G Christodoulou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony G Christodoulou', 18)}}的其他基金
Fully Quantitative Low-Dose, Motion-Resolved Dynamic Contrast-Enhanced MRI in Pancreatic Adenocarcinoma
胰腺癌的全定量低剂量运动分辨动态对比增强 MRI
- 批准号:
10646508 - 财政年份:2022
- 资助金额:
$ 67.68万 - 项目类别:
Fully Quantitative Low-Dose, Motion-Resolved Dynamic Contrast-Enhanced MRI in Pancreatic Adenocarcinoma
胰腺癌的全定量低剂量运动分辨动态对比增强 MRI
- 批准号:
10419915 - 财政年份:2022
- 资助金额:
$ 67.68万 - 项目类别:
SSFP Cardiovascular MR Imaging on 3.0T Using Unified-Coil Local Shimming
使用统一线圈局部匀场在 3.0T 上进行 SSFP 心血管 MR 成像
- 批准号:
10530641 - 财政年份:2020
- 资助金额:
$ 67.68万 - 项目类别:
SSFP Cardiovascular MR Imaging on 3.0T Using Unified-Coil Local Shimming
使用统一线圈局部匀场在 3.0T 上进行 SSFP 心血管 MR 成像
- 批准号:
10152406 - 财政年份:2020
- 资助金额:
$ 67.68万 - 项目类别:
SSFP Cardiovascular MR Imaging on 3.0T Using Unified-Coil Local Shimming
使用统一线圈局部匀场在 3.0T 上进行 SSFP 心血管 MR 成像
- 批准号:
10318662 - 财政年份:2020
- 资助金额:
$ 67.68万 - 项目类别:
Motion-Resolved, Comprehensive Quantitative Tissue Characterization Using MR Multitasking
使用 MR 多任务处理进行运动解析、全面的定量组织表征
- 批准号:
10376180 - 财政年份:2019
- 资助金额:
$ 67.68万 - 项目类别:
Motion-Resolved, Comprehensive Quantitative Tissue Characterization Using MR Multitasking
使用 MR 多任务处理进行运动解析、全面的定量组织表征
- 批准号:
9886248 - 财政年份:2019
- 资助金额:
$ 67.68万 - 项目类别:
Expanding on a new paradigm for MRI in pediatric congenital heart disease
拓展小儿先天性心脏病 MRI 的新范例
- 批准号:
10469364 - 财政年份:2015
- 资助金额:
$ 67.68万 - 项目类别:
Expanding on a new paradigm for MRI in pediatric congenital heart disease
拓展小儿先天性心脏病 MRI 的新范例
- 批准号:
10622604 - 财政年份:2015
- 资助金额:
$ 67.68万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 67.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)