Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
基本信息
- 批准号:9895281
- 负责人:
- 金额:$ 15.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlloysAluminumAnimalsAnodesAnti-Bacterial AgentsAntibioticsBacteriaBacterial AdhesionBacterial Antibiotic ResistanceBiologicalBone DiseasesBone GrowthBone Marrow CellsBone RegenerationBone callusCalciumCellsClinicalClinical TrialsComplementCoupledCouplingDeformityDependenceDevice RemovalDevicesDimensionsDisadvantagedDistraction OsteogenesisElementsEngineeringEquipment MalfunctionFaceFutureGeneral AnesthesiaGoalsHistologyImageImmuneImplantIn VitroInfectionInfection preventionInflammatory ResponseKnowledgeLeadMagnesiumMandibleMeasuresMechanicsMetalsMethodsMicroscopyMiniature SwineModelingMonitorNanostructuresNutrientOperative Surgical ProceduresOsteogenesisOsteotomyOutcomeOxidesPerformancePhysiologic calcificationPilot ProjectsPlantsPolyestersProcessPropertyRare Earth MetalsRattusResearchRodRoentgen RaysSecureSideSkinSpectrum AnalysisSterilityStressSurfaceSurgical complicationTechniquesTechnology TransferTestingTimeTitaniumToxic effectTraumaWeight-Bearing stateX-Ray Computed TomographyZincage groupantimicrobialbactericidebioimagingbiomaterial compatibilitybonebone cellbone healingclinical translationcostcraniofacialcraniomaxillofacialcrystallinitydesigndevelopmental diseasedistractionexperiencehealinghigh riskimmune healthimplantable deviceimprovedin vivoinfection riskinnovationinterestmaterials sciencemechanical propertiesmeetingsnoveloperationosteogenicpathogenic bacteriapoly-L-lactic acidprematurepublic health relevancereconstructionrepairedresponseskeletalsocialtooltumor
项目摘要
Project Summary
Distraction Osteogenesis (DO) is a technique for repairing moderate to severe congenital and acquired cra-
niomaxillofacial (CMF) skeletal deformities. Distraction devices are frequently used to secure and elongate the
bones where an osteotomy is created purposely, and allow the body's natural osteogenic processes to produce
new bone to fill the expanding gap at 1-3 mm/day. In contrast to external devices, internal distraction devices
(IDD) are implanted directly to the bone, are more comfortable to wear for a long period of several months without
social discomfort, and permit greater retention periods, which lead to better long-term stability than external
devices. However, the major disadvantage of IDD is that they require a second invasive operation under general
anesthesia for device removal, because current IDDs are made out of non-degradable titanium (Ti) alloys. IDDs
of degradable polyesters such as poly-L-lactic acid (PLLA) and derivatives have been attempted, but clinically
abandoned because their inherently lower mechanical strength than that of metals caused premature collapse
of device. Moreover, distractors normally protrude through the skin for turning and thus face a higher risk for
infections. Infection-induced poor bone growth and complications require systemic administration of antibiotics
and often additional revision surgeries. This project will provide a promising solution of bioresorbable antimicro-
bial devices that eliminate the secondary surgeries and infection-induced complications, thus improving clinical
outcome. The PI has engineered a new class of Mg alloy via coupling biocompatible nutrient elements Mg, zinc
(Zn) and calcium (Ca) with novel alloy processing and surface treatment, which not only provide the needed
mechanical and degradation properties, but also induce desirable cellular responses for bone growth and anti-
microbial property. The PI has demonstrated antibacterial property and bioactivity of the new Mg alloys with
nanostructured surfaces in vitro using pathogenic bacteria and relevant bone marrow cells. The objective of this
project is to fabricate a model IDD using the crystalline Mg-Zn-Ca alloys coupled with nanostructured surfaces
and verify the antibacterial property, bioactivity, biocompatibility, and mechanical properties in vivo. The central
hypothesis is that the IDDs made of the bioresorbable alloys with nanostructured surfaces will reduce bacterial
adhesion and viability in vivo while meeting the requirements of mechanical properties and bioactivity for DO,
built on the PI’s prior results and positive effects of Mg, Zn, and Ca as essential nutrients for bone repair and
immune system health. This project is innovative because the alloy design, processing, and nanostructured
surface treatment synergize biological benefits with materials science tetrahedron to achieve integrated mechan-
ical and biological properties. This project is significant because it will overcome the critical knowledge gap on
the in vivo interactions of bioresorbable IDDs with bacteria, crucial bone cells and immune cells, demonstrate
load-bearing capacity of bioresorbable IDDs, and thus advance the new devices toward clinical translation. This
research will lead to new solutions for repairing CMF bone deformities and reducing complications.
项目摘要
牵引成骨(DO)是一种修复中重度先天性和获得性CRA的技术。
颌面(CMF)骨骼畸形分心装置经常被用来固定和拉长
有目的地进行截骨术的骨骼,允许身体的自然成骨过程产生
新骨以1-3 mm/天的速度填充不断扩大的间隙。与外部设备相比,内部分心设备
(IDD)直接植入骨骼,长时间佩戴几个月更舒适
社会不适,并允许更长的保留期,这导致了比外部环境更好的长期稳定性
设备。然而,IDD的主要缺点是在一般情况下需要二次侵入性手术
麻醉取出装置,因为目前的IDDS是由不可降解的钛(钛)合金制成的。IDDS
一些可降解的聚酯,如聚L-乳酸(PLLA)及其衍生物,已经尝试过,但在临床上
废弃是因为其固有的机械强度比金属低,导致过早坍塌
设备的一部分。此外,干扰物通常会通过皮肤突出以进行旋转,因此面临更高的风险
感染。感染引起的骨骼生长不良和并发症需要全身使用抗生素
通常还会进行额外的翻修手术。该项目将为生物可再吸收抗微生物提供一种有前景的解决方案。
消除二次手术和感染引起的并发症的BAL装置,从而改善临床
结果。PI通过偶联生物相容的营养元素镁、锌,设计出了一种新型的镁合金
(锌)和钙(钙)采用新的合金加工和表面处理,不仅提供了所需的
机械和降解特性,但也诱导理想的细胞反应骨生长和抗
微生物特性。等电点显示了新型镁合金的抗菌性能和生物活性
纳米结构表面在体外使用病原菌和相关的骨髓细胞。这样做的目的是
该项目是利用晶态的镁锌钙合金与纳米结构的表面相耦合来制作IDD模型
并在体内验证其抗菌性、生物活性、生物相容性和力学性能。中环
假设由具有纳米结构表面的生物可吸收合金制成的IDDS将减少细菌
在满足DO的机械性能和生物活性要求的同时,
基于PI的先前结果和镁、锌和钙作为骨修复和骨修复所必需的营养物质的积极作用
免疫系统健康。这个项目是创新的,因为合金的设计、加工和纳米结构
表面处理与材料科学四面体协同生物效益,实现机械一体化--
生理和生物学特性。这个项目意义重大,因为它将克服
可生物吸收的IDDS与细菌、关键骨细胞和免疫细胞的体内相互作用表明
生物可吸收IDDS的承载能力,从而将新型装置推向临床。这
研究将为修复CMF骨畸形和减少并发症找到新的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huinan Hannah Liu其他文献
Huinan Hannah Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huinan Hannah Liu', 18)}}的其他基金
Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
- 批准号:
10306931 - 财政年份:2020
- 资助金额:
$ 15.27万 - 项目类别:
Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
- 批准号:
10063989 - 财政年份:2019
- 资助金额:
$ 15.27万 - 项目类别:
Antibacterial Biocompatible Bioresorbable Alloys for Musculoskeletal Implants
用于肌肉骨骼植入物的抗菌生物相容性生物可吸收合金
- 批准号:
9038737 - 财政年份:2016
- 资助金额:
$ 15.27万 - 项目类别:
Antibacterial Biocompatible Bioresorbable Alloys for Musculoskeletal Implants
用于肌肉骨骼植入物的抗菌生物相容性生物可吸收合金
- 批准号:
9251239 - 财政年份:2016
- 资助金额:
$ 15.27万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 15.27万 - 项目类别:
Research Grant














{{item.name}}会员




