MRI CORTICOGRAPHY: DEVELOPING NEXT GENERATION MICROSCALE HUMAN CORTEX MRI SCANNER
MRI 皮质成像:开发下一代微型人类皮质 MRI 扫描仪
基本信息
- 批准号:9768463
- 负责人:
- 金额:$ 410.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsAnatomyAreaAxonBehaviorBrainBrain imagingBrodmann&aposs areaCell DensityCerebral cortexClinicalCognitionComputer SimulationComputer softwareCortical ColumnDataDevelopmentEcho-Planar ImagingEpilepsyEvaluationFaceFeedbackFunctional Magnetic Resonance ImagingHeadHeatingHumanImageImageryInjuryMagnetic Resonance ImagingMagnetismMapsMeasuresMedicalModelingMotionNeocortexNeuronsNeurosciencesNeurosciences ResearchPatientsPerformancePeripheral Nerve StimulationPhasePhysiologic pulsePilot ProjectsPower SourcesPredispositionProtocols documentationRecoveryResearchResolutionScienceShapesSignal TransductionSliceSpeedStructureSystemTechniquesTechnologyThree-Dimensional ImagingTimeautism spectrum disorderbasebrain circuitrycohortcontrast imagingcortex mappingdata acquisitiondata reductiondensitydesignhuman imagingimprovedmagnetic fieldneocorticalneural circuitneuronal circuitrynext generationprospectivescale uptemporal measurementtool
项目摘要
SUMMARY
The overarching objective of our proposal is to bring noninvasive human brain imaging into the microscale
(50-500 micron isotropic) resolution in order to create a tool for studies of neuronal circuitry and network
organization in the human brain. Our breakthrough technology, MR Corticography (MRCoG), represents
substantial advances over existing MRI approaches. MRCoG achieves dramatic gains in spatial and
temporal resolutions by focusing several different types of coil arrays on the cerebral cortex of the live
human brain. These optimized high-density receiver arrays with 128 coils also serve as a shim array and
thereby obtain much higher quality imaging. High-performance magnetic field gradients will be combined
with state-of-the-art pulse sequences to produce over 30-times acceleration in echo planar imaging. This will
enable us to reach 0.4 mm resolution in fMRI studies of the entire cerebral cortex. This unprecedented
spatial resolution in human fMRI is sufficient to identify functional activity at different depth in the cortex
corresponding to different cortical layers. MRCoG will also be used to achieve 100-200 micron resolution
susceptibility contrast images and this enables us to map intra-cortical axon connections and the
cytoarchitecture of human cortex. With over 10 times higher resolution than current 7T scanners, MRCoG
will overcome current scale limitations in imaging the function and structure of cortical layers and columns.
The evaluation and refinement of MRCoG will entail using advanced computational models of brain
circuitry, feedforward and feedback neuronal circuit models and computational models for decoding the
brain using data from layer specific and column specific fMRI. Functional and structural MRI performed with
MRCoG will generate new avenues to explore human brain circuitry at an order of magnitude higher spatial
resolution, while importantly image the entire cortex rather than by current approaches (e.g. zoomed
imaging) that measure only small areas of cortex.
Many existing 7T MRI scanners will be able to incorporate MRCoG high-resolution technology;
therefore, MRCoG can be rapidly disseminated to neuroscience research centers and used to advance
medical discoveries. We will evaluate MRCoG ability to resolve currently unobservable cortex abnormalities
in epilepsy and autism spectrum disorder (ASD) and to improve localization and mapping of abnormal
circuitry in the brain.
摘要
我们建议的首要目标是将非侵入性人脑成像技术带入微尺度。
(50-500微米各向同性)分辨率,以便创建研究神经元电路和网络的工具
人脑中的组织。我们的突破性技术磁共振皮质成像(MRCOG)代表着
与现有的磁共振成像方法相比有了实质性的进步。MRCOG在空间和空间方面取得了显著进展
几种不同类型线圈阵列聚焦于活体大脑皮层的时间分辨率
人脑。这些具有128个线圈的优化高密度接收器阵列还用作垫片阵列和
从而获得更高质量的成像。高性能的磁场梯度将结合在一起
使用最先进的脉冲序列,在回波平面成像中产生超过30倍的加速。这将是
使我们能够在整个大脑皮层的功能磁共振研究中达到0.4毫米的分辨率。这是前所未有的
人类功能磁共振成像的空间分辨率足以识别大脑皮质不同深度的功能活动
对应于不同的皮质层。MRCOG还将用于实现100-200微米的分辨率
易感性对比图像,这使我们能够映射皮质内轴突连接和
人类大脑皮层的细胞结构。MRCOG的分辨率是目前7T扫描仪的10倍以上
将克服目前在对皮质层和柱的功能和结构进行成像方面的规模限制。
MRCOG的评估和改进将需要使用先进的大脑计算模型
电路、前馈和反馈神经元电路模型和解码的计算模型
使用来自特定层和特定列的功能磁共振成像的数据。进行功能和结构磁共振检查
MRCOG将产生新的途径,在更高的空间数量级探索人类大脑电路
分辨率,虽然重要的是成像整个大脑皮层,而不是通过当前的方法(例如,缩放
成像),仅测量皮质的小区域。
许多现有的7T核磁共振扫描仪将能够采用MRCOG高分辨率技术;
因此,MRCOG可以迅速传播到神经科学研究中心,并用于推进
医学发现。我们将评估MRCOG解决目前无法观察到的皮质异常的能力
在癫痫和自闭症谱系障碍(ASD)和改善异常定位和标测
大脑中的电路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Alan Feinberg其他文献
David Alan Feinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Alan Feinberg', 18)}}的其他基金
MRI CORTICOGRAPHY: DEVELOPING NEXT GENERATION MICROSCALE HUMAN CORTEX MRI SCANNER
MRI 皮质成像:开发下一代微型人类皮质 MRI 扫描仪
- 批准号:
10265466 - 财政年份:2017
- 资助金额:
$ 410.27万 - 项目类别:
Foundations of MRI Corticography for mesoscale organization and neuronal circuitry
中尺度组织和神经元回路的 MRI 皮质成像基础
- 批准号:
9206105 - 财政年份:2016
- 资助金额:
$ 410.27万 - 项目类别:
Highly Accelerated Simultaneous Multi-Slice Phase Contrast MRI
高加速同步多层相衬 MRI
- 批准号:
9142186 - 财政年份:2016
- 资助金额:
$ 410.27万 - 项目类别:
Foundations of MRI Corticography for mesoscale organization and neuronal circuitry
中尺度组织和神经元回路的 MRI 皮质成像基础
- 批准号:
9763650 - 财政年份:2016
- 资助金额:
$ 410.27万 - 项目类别:
Highly Accelerated Simultaneous Multi-Slice Phase Contrast MRI
高加速同步多层相衬 MRI
- 批准号:
9322305 - 财政年份:2016
- 资助金额:
$ 410.27万 - 项目类别:
MRI Corticography (MRCoG): Micro-scale Human Cortical Imaging
MRI 皮质成像 (MRCoG):微型人体皮质成像
- 批准号:
9085397 - 财政年份:2014
- 资助金额:
$ 410.27万 - 项目类别:
MRI Corticography (MRCoG): Micro-scale Human Cortical Imaging
MRI 皮质成像 (MRCoG):微型人体皮质成像
- 批准号:
8828462 - 财政年份:2014
- 资助金额:
$ 410.27万 - 项目类别:
fMRI of human LGN: Functional subdivisions and geniculocortical connectivity
人类 LGN 的功能磁共振成像:功能细分和膝皮质连接
- 批准号:
8815317 - 财政年份:2014
- 资助金额:
$ 410.27万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 410.27万 - 项目类别:
Continuing Grant














{{item.name}}会员




