MRI-compatible and integrated devices for simultaneous neural recording, stimulation, imaging
与 MRI 兼容的集成设备,用于同步神经记录、刺激、成像
基本信息
- 批准号:9465986
- 负责人:
- 金额:$ 22.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAnesthesia proceduresAnimalsBasic ScienceBiomedical ResearchBrainBrain DiseasesBrain scanBusinessesClinicalClinical TreatmentDevice SafetyDevicesDiagnosisDiseaseElectrocorticogramElectroencephalogramElectroencephalographyElectromagneticsElectronicsElectrophysiology (science)EnvironmentEpilepsyEventFoundationsFunctional Magnetic Resonance ImagingHarvestHeartHumanImageImaging technologyIndianaKnowledgeLinkMRI ScansMagnetic Resonance ImagingManufacturer NameMental DepressionMicroelectrodesMorphologic artifactsNamesNeuronsNeurosciencesNeurosciences ResearchNoiseOrganOutcomeParkinson DiseasePatientsPatternPhasePreventionProductionRF coilRattusResearchResolutionSafetySignal TransductionSpecificityStomachSystemTechnical ExpertiseTechniquesTechnologyTestingUniversitiesWireless Technologybasebrain researchclinical Diagnosisclinical practicecommercializationcostdensitydesignexperimental studyhemodynamicsimprovedin vivointerestminiaturizemultimodalitynanofabricationneural stimulationneuroregulationneurotransmissionnovelprototyperelating to nervous systemscale upsignal processingspatiotemporaltranslational neuroscience
项目摘要
Project Summary
The use of technologies for imaging, recording and modulating brain activity is rapidly advancing neuroscience.
Notably, microelectrodes are used to locally record neural activity or to perturb circuit function. Functional
magnetic resonance imaging (fMRI) is widely used to image large-scale patterns of hemodynamic fluctuations
accompanying neural activity. Although these techniques have become the workhorse of basic and
translational neuroscience, they are mainly employed separately and provide only partial views of brain
functions with massively different spatiotemporal resolution and specificity. At present, there is no established
way to combine these multimodal and multiscale techniques into a fully integrated system that would allow us
to link local neuronal events or modulations to large-scale network activities. The absence of such a system
will continue to present significant barriers that impede bridging brain activity across spatial and temporal
scales. There is a critical need to develop a novel system that will enable and integrate simultaneous neural
imaging, recording and modulation at local and global scales for a variety of neuroscience applications. To
meet this critical need, MR-Link LLC, and its partners at Purdue University, propose to develop, test and
commercialize a unique (Purdue IP: 67628 & 67330) integrated system for concurrent fMRI, electrical
recording and stimulation. Central to this system is a novel microelectronic device, which will be miniaturized,
battery-free, and wireless, to enable high-density neural recording and modulation during high-throughput brain
scans. It will also eliminate the effects of electromagnetic interference, utilize existing hardware in the MRI
system for multimodal capabilities, enable synchronized and concurrent neural recording, stimulation and
imaging, and reduce the size and cost of MRI-compatible neural recording or stimulation systems. Thus, the
device is well suited for wide commercialization to accelerate neuroscience research in basic and clinical
settings. Phase I Specific Aims: 1) Develop the MR-Link devices for neural recording and stimulation, and 2)
Test the MR-Link devices with in vivo experiments on rats in 7-T MRI. At the conclusion of Phase I, MR-Link
and its research partners at Purdue will have designed and fabricated the device, and also tested the feasibility,
efficacy, and safety of using the “MR-Link” for simultaneous in vivo recording, stimulation, and imaging of the
rat brain. Phase I will lay the technical foundation for Phase II, in which MR-Link will continue to refine the
design for recording and stimulating the human brain, scale up to 256 or 512 recording/stimulation channels,
miniaturize the device through nanofabrication, prepare and start mass production for wide dissemination, and
partner with major MRI manufacturers to integrate MR-Link devices with all research and clinical MRI systems.
MR-Link will supply more affordable, accessible, reliable, and powerful solutions for simultaneous neural
imaging, recording, and stimulation in animals and humans, creating a new window of opportunity to transform
basic neuroscience research and advance clinical diagnosis and treatment of brain disorders.
项目摘要
成像、记录和调节大脑活动的技术的使用正在迅速推进神经科学。
值得注意的是,微电极用于局部记录神经活动或干扰电路功能。功能
磁共振成像(fMRI)被广泛地用于对血液动力学波动的大尺度模式进行成像
伴随着神经活动。虽然这些技术已经成为基本的主力,
翻译神经科学,他们主要是单独雇用,只提供部分意见,大脑
具有巨大不同的时空分辨率和特异性。目前,还没有建立
一种联合收割机将这些多模式和多尺度技术结合到一个完全集成的系统中的方法,
将局部神经元事件或调制与大规模网络活动联系起来。缺乏这样的制度
将继续呈现阻碍跨越空间和时间的桥接大脑活动的重大障碍
鳞片迫切需要开发一种新的系统,该系统将使能并整合同时的神经网络,
在局部和全局范围内进行成像、记录和调制,用于各种神经科学应用。到
为了满足这一关键需求,MR-Link LLC及其普渡大学的合作伙伴提议开发、测试和
商业化一个独特的(普渡IP:67628和67330)集成系统,用于并行功能磁共振成像,电
记录和刺激。该系统的核心是一种新型微电子设备,它将被小型化,
无电池和无线,以实现高密度神经记录和调制,
扫描。它还将消除电磁干扰的影响,利用MRI中的现有硬件
用于多模式能力系统,能够同步和并发地记录、刺激
成像,并减少MRI兼容的神经记录或刺激系统的尺寸和成本。因此
该设备非常适合广泛商业化,以加速基础和临床神经科学研究
设置. I期具体目标:1)开发用于神经记录和刺激的MR-Link器械,以及2)
在7-T MRI中对大鼠进行体内实验,测试MR-Link器械。在第一阶段结束时,MR-Link
及其在普渡大学的研究伙伴将设计和制造该设备,并测试其可行性,
使用“MR-Link”同时进行体内记录、刺激和成像的有效性和安全性
老鼠大脑。第一阶段将为第二阶段奠定技术基础,在第二阶段,MR-Link将继续完善
设计用于记录和刺激人脑,可扩展至256或512个记录/刺激通道,
通过纳米纤维将设备组装起来,准备并开始大规模生产以广泛传播,
与主要MRI制造商合作,将MR-Link设备与所有研究和临床MRI系统集成。
MR-Link将为同步神经网络提供更经济、更方便、更可靠、更强大的解决方案。
在动物和人类中进行成像、记录和刺激,创造了一个新的机会之窗,
基础神经科学研究和先进的临床诊断和治疗脑部疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Irazoqui其他文献
Pedro Irazoqui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro Irazoqui', 18)}}的其他基金
Sequence of physiological events during oxygen conserving reflex activation leading to sudden death in epilepsy
节氧反射激活期间导致癫痫猝死的生理事件序列
- 批准号:
10097583 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Sequence of physiological events during oxygen conserving reflex activation leading to sudden death in epilepsy
节氧反射激活期间导致癫痫猝死的生理事件序列
- 批准号:
10931220 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Sequence of physiological events during oxygen conserving reflex activation leading to sudden death in epilepsy
节氧反射激活期间导致癫痫猝死的生理事件序列
- 批准号:
10310425 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Sequence of physiological events during oxygen conserving reflex activation leading to sudden death in epilepsy
节氧反射激活期间导致癫痫猝死的生理事件序列
- 批准号:
10622708 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Long-term In Vivo Monitoring of Neuromuscular Performance in Mice
小鼠神经肌肉性能的长期体内监测
- 批准号:
8627916 - 财政年份:2013
- 资助金额:
$ 22.83万 - 项目类别:
Long-term In Vivo Monitoring of Neuromuscular Performance in Mice
小鼠神经肌肉性能的长期体内监测
- 批准号:
8719823 - 财政年份:2013
- 资助金额:
$ 22.83万 - 项目类别:
A Multidisciplinary and Needs-Driven Approach to Translational Team-Based Biomedi
基于团队的生物医学转化的多学科和需求驱动方法
- 批准号:
8260337 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
A Multidisciplinary and Needs-Driven Approach to Translational Team-Based Biomedi
基于团队的生物医学转化的多学科和需求驱动方法
- 批准号:
8075346 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
A Multidisciplinary and Needs-Driven Approach to Translational Team-Based Biomedi
基于团队的生物医学转化的多学科和需求驱动方法
- 批准号:
8667437 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
A Multidisciplinary and Needs-Driven Approach to Translational Team-Based Biomedi
基于团队的生物医学转化的多学科和需求驱动方法
- 批准号:
8474752 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Research Grant














{{item.name}}会员




