Fate of the kidney vasculature during partial neonatal ureteral obstruction
新生儿输尿管部分梗阻期间肾脏脉管系统的命运
基本信息
- 批准号:9924589
- 负责人:
- 金额:$ 36.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-20 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultBlood VesselsCell CompartmentationCell Fate ControlCell LineageCellsChildChronicChronic Kidney FailureClinicalDataDevelopmentDuct (organ) structureDuctal Epithelial CellEnd stage renal failureEndotheliumEnterobacteria phage P1 Cre recombinaseExcisionFamilyFetusFibrosisFoundationsGeneticGenetic TranscriptionGoalsGrowthHumanImmunohistochemistryImpairmentInfantInjuryInjury to KidneyInterventionKidneyKidney DiseasesKnowledgeLabelLeadMaintenanceModelingMolecularMorphogenesisMorphologyMusNatural regenerationNeonatalNephronsObstructionOperative Surgical ProceduresOrganPathway interactionsPatientsPhasePlayPopulationProceduresRecombinantsRecoveryRegenerative MedicineRenal functionReninReporterResearch Project GrantsRoleSecond Pregnancy TrimesterSocietiesStructureTechniquesTestingTherapeuticThinnessTissuesTransgenic MiceTreesTubular formationUreteral obstructionVascular Morphologic ChangeVascularizationWorkbasecell typedesignexperimental studyin uteroinducible gene expressioninjury and repairinterstitialinterstitial cellkidney cellkidney vascular structuremouse modelmutantnephrogenesisnotch proteinnovel strategiesnovel therapeuticsorgan growthpostnatalpreventprogenitorregenerativeregenerative therapyrenal damagerepairedresponseurinary tract obstruction
项目摘要
ABSTRACT
Obstructive nephropathy, the leading cause of chronic kidney disease in infants and children not only impairs
nephrogenesis but can also lead to progressive destruction of immature and mature nephrons via injury to the
vascular, tubular, and interstitial compartments. The proposed research project is designed to identify the
vascular precursors and the mechanisms whereby they repair the injured kidney, using a model of reversible
partial unilateral ureteral obstruction (pUUO) in the neonatal mouse, which parallels urinary tract obstruction in
the human fetus. Our preliminary data using genetic cell fate tracing techniques show that during neonatal
pUUO there are severe abnormalities in the renal arterial tree followed by loss of proximal tubular and
collecting duct cells. Concomitant with the nephrovascular damage, there is expansion of interstitial cells
ultimately leading to fibrosis. Remarkably, upon release of obstruction, reversal of the damage occurs with
regeneration of the vasculature, proximal tubules and collecting ducts. The striking recovery observed after
release of ureteral obstruction requires the reenactment of developmental pathways that control cell fate,
positional information and organized growth. We propose that the kidney vasculature plays a direct and
central role in the ability of the kidney to regenerate and repair after injury. Therefore, in this proposal we
will test the interrelated hypotheses that ureteral obstruction leads to defective vascular morphogenesis and
changes in cell fate and that that RBP-J (the transcriptional effector of all the Notch receptors) not only controls
the normal development of the kidney vessels, but also the fate and regeneration of the vasculature and its
associated nephrons after release of obstruction. In summary, we will explore how changes in cell identity and
fate create massive morphological and functional changes which in turn determine whether the tissue will be
healthy or unrecoverable. Specific Aim 1 will define the vascular changes of the postnatal kidney following
obstructive nephropathy and after release, Specific Aim 2 will determine the fate of vascular cells using
specific Cre recombinant and fluorescent reporter mouse lines, and Specific Aim 3 will determine whether
Rbp-J plays a role in the regeneration and maintenance of the renal vasculature and associated nephrons
during obstruction and after its release using mice with inducible expression of Cre recombinase and
concomitant fluorescent reporter expression that allows to trace the fate of the mutant cells. The proposed
work will fill an important gap in our knowledge: deciphering the cellular and molecular mechanisms involved in
nephrovascular repair and regeneration has potential therapeutic implications for infants and children and the
growing adult population suffering from chronic kidney disease.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARIA LUISA Soledad SEQUEIRA-LOPEZ其他文献
MARIA LUISA Soledad SEQUEIRA-LOPEZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARIA LUISA Soledad SEQUEIRA-LOPEZ', 18)}}的其他基金
Renin cell identity and blood pressure homeostasis
肾素细胞特性和血压稳态
- 批准号:
10398851 - 财政年份:2020
- 资助金额:
$ 36.34万 - 项目类别:
Renin cell identity and blood pressure homeostasis
肾素细胞特性和血压稳态
- 批准号:
10621214 - 财政年份:2020
- 资助金额:
$ 36.34万 - 项目类别:
Fate of the kidney vasculature during partial neonatal ureteral obstruction
新生儿输尿管部分梗阻期间肾脏脉管系统的命运
- 批准号:
10159245 - 财政年份:2018
- 资助金额:
$ 36.34万 - 项目类别:
相似海外基金
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
All-in-One Smart Artificial Blood Vessels
一体化智能人造血管
- 批准号:
EP/X027171/2 - 财政年份:2024
- 资助金额:
$ 36.34万 - 项目类别:
Fellowship
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
- 批准号:
23H02991 - 财政年份:2023
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ealization of navigation surgery by automatic recognition of stomach and surrounding blood vessels using artificial intelligence
利用人工智能自动识别胃及周围血管,实现导航手术
- 批准号:
23K07176 - 财政年份:2023
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realtime observation and optical control of living microbial probes in blood vessels
血管内活微生物探针的实时观察和光学控制
- 批准号:
23H00551 - 财政年份:2023
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Creation of a technique for visualization of stress concentration in blood and blood vessels by combined measurement of photoelasticity and ultrasonic Doppler velocimetry
通过光弹性和超声多普勒测速的组合测量,创建了一种可视化血管中应力集中的技术
- 批准号:
23H01343 - 财政年份:2023
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels
剪切应力激活合成细胞用于狭窄血管中的靶向药物释放
- 批准号:
10749217 - 财政年份:2023
- 资助金额:
$ 36.34万 - 项目类别:
Creation of 3D tissue culture system integrated with blood vessels and autonomic nerves
打造血管与植物神经融合的3D组织培养系统
- 批准号:
23H01827 - 财政年份:2023
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
- 批准号:
22K21006 - 财政年份:2022
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Research Activity Start-up