Novel statistical methods to localize genomic elements underlying adaptive evolution
定位适应性进化背后的基因组元素的新统计方法
基本信息
- 批准号:9926886
- 负责人:
- 金额:$ 32.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-06 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAfricaAfricanAlgorithmsAllelesAltitudeAnimal ModelBiologicalBiomedical ResearchChromosome MappingComplexComputer softwareComputing MethodologiesCritical PathwaysDataData SetDependenceDetectionDevelopmentDietDisease PathwayElementsEnvironmentEvolutionFaceFutureGenesGeneticGenetic PolymorphismGenetic VariationGenomeGenomic SegmentGenomicsGoalsHealthHeightHemoglobinHumanHuman BiologyHuman GeneticsHuman GenomeIndividualJointsKnowledgeLactaseLarge-Scale SequencingLettersLightMeasuresMethodsMissionModelingModernizationMolecular EvolutionMutationOrganismOutcomeOutcomes ResearchOutputPathway interactionsPhenotypePopulationPopulation ProcessProbabilityPublic HealthRecording of previous eventsReportingResearchResearch PersonnelRoleSamplingScanningShapesSiteStatistical MethodsTestingTimeUncertaintyUnited States National Institutes of HealthUrsidae FamilyValidationVariantWorkYangcostexhaustionexomefitnessgenome-widegenomic datagenomic signatureinnovationinsightinsulin regulationinterestlarge scale datamarkov modelmutation screeningnext generation sequencingnovelpathogenpressurepublic health relevancestatisticstooltraitwhole genome
项目摘要
DESCRIPTION (provided by applicant): Determining the genomic elements underlying adaptive evolution in a species is essential for connecting genetic variation to phenotypes and fitness, but current statistical methods overlook the confounding effect population histories have on the identification and localization of adaptive mutations. The field of genomics urgently needs methods that (i) model the complex interaction between various modes of selection and population histories; (ii) accurately identify and localize mutations, genes, and pathways underlying adaptive traits for further experimental validation; and (iii) efficiently analyze large
scale datasets. Without such methods, the role of adaptation in human molecular evolution cannot be determined. The long-term goal of the researchers is to develop state-of-the-art methods for the detailed inference of evolutionary parameters and disease pathways from next-generation sequencing datasets. The objective of this application is to characterize the genomic elements underlying adaptive evolution in the human genome, through the development and application of a suite of novel statistical and computational methods. The aims of the proposal are to: 1) identify adaptive mutations in diverse human populations using novel, probabilistically interpretable frameworks; 2) develop a frame-work for joint inference of selection and population history from whole-genome sequences; and 3) characterize gene subnetworks underlying human adaptive evolution by developing and applying new tests for polygenic adaption to human genomic data. The methods developed will be applicable to existing and emerging genome- wide polymorphism and next-generation sequencing datasets for humans and a range of other organisms. The contribution of the proposed research will be significant because it will shed light on the mutations that allowed human ancestors to survive in the face of novel environments, diets, and pathogens; humans will face similar environmental pressures in the future, and the proposed research will determine genetic pathways that are critical to human survival in a hostile world. The proposed research is innovative in many distinct ways. First, these new methods will be able to test for multiple modes of selection, moving beyond classifying sites as simply "neutral" or "adaptive". Second, the methods developed here will control for dependencies among statistics measuring selection, enabling new understanding of which combinations of genomic signatures are most informative for the detection of different modes of selection. Third, the proposed research will expand the focus of population-genomic studies of adaptation beyond monogenic adaptation to polygenic adaptation. The out- comes of this research will have an important positive impact: giving new insight into the interaction between selection and dynamic population histories in generating human genetic diversity, while determining how adaptation shapes the human phenotype and advancing our understanding of the biology of the human genome.
描述(申请人提供):确定一个物种适应性进化背后的基因组元素对于将遗传变异与表型和适应性联系起来是必不可少的,但目前的统计方法忽略了种群历史对适应性突变的识别和定位所产生的混杂影响。基因组学领域迫切需要这样的方法:(I)模拟各种选择模式和种群历史之间的复杂相互作用;(Ii)准确地识别和定位潜在的适应特性的突变、基因和途径,以供进一步的实验验证;以及(Iii)有效地分析
缩放数据集。如果没有这样的方法,就无法确定适应在人类分子进化中的作用。研究人员的长期目标是开发最先进的方法,从下一代测序数据集中详细推断进化参数和疾病路径。这项应用的目标是通过开发和应用一套新的统计和计算方法来表征人类基因组中潜在的适应性进化的基因组元素。该提案的目的是:1)使用新的、可概率解释的框架来识别不同人类种群中的适应性突变;2)开发一个框架,用于从全基因组序列中联合推断选择和种群历史;以及3)通过开发和应用新的多基因适应人类基因组数据的测试来表征人类适应性进化的基因子网络。开发的方法将适用于现有的和新兴的全基因组多态和人类和一系列其他生物的下一代测序数据集。拟议中的研究将做出重大贡献,因为它将揭示使人类祖先能够在新环境、饮食和病原体面前生存的突变;人类未来将面临类似的环境压力,拟议中的研究将确定对人类在敌对世界中生存至关重要的遗传路径。这项拟议的研究在许多不同的方面都是创新的。首先,这些新方法将能够测试多种选择模式,超越了将地点简单地归类为“中性”或“适应性”的范畴。其次,这里开发的方法将控制统计测量选择之间的相关性,使人们能够重新理解基因组签名的哪些组合对于检测不同的选择模式最具信息量。第三,拟议的研究将把适应的种群基因组研究的重点从单基因适应扩大到多基因适应。这项研究的成果将产生重要的积极影响:在产生人类遗传多样性的过程中,为选择和动态种群历史之间的相互作用提供新的见解,同时确定适应如何塑造人类表型,并促进我们对人类基因组生物学的理解。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty quantification in variable selection for genetic fine-mapping using bayesian neural networks.
- DOI:10.1016/j.isci.2022.104553
- 发表时间:2022-07-15
- 期刊:
- 影响因子:5.8
- 作者:Cheng, Wei;Ramachandran, Sohini;Crawford, Lorin
- 通讯作者:Crawford, Lorin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sohini Ramachandran其他文献
Sohini Ramachandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sohini Ramachandran', 18)}}的其他基金
Novel population-genetic methods for localizing targets of natural selection in diverse human genomes
用于在不同人类基因组中定位自然选择目标的新群体遗传学方法
- 批准号:
10321900 - 财政年份:2021
- 资助金额:
$ 32.44万 - 项目类别:
Novel population-genetic methods for localizing targets of natural selection in diverse human genomes
用于在不同人类基因组中定位自然选择目标的新群体遗传学方法
- 批准号:
10538648 - 财政年份:2021
- 资助金额:
$ 32.44万 - 项目类别:
Predoctoral Training Program in Biological Data Science at Brown University
布朗大学生物数据科学博士前培训项目
- 批准号:
10405983 - 财政年份:2018
- 资助金额:
$ 32.44万 - 项目类别:
Predoctoral Training Program in Biological Data Science at Brown University
布朗大学生物数据科学博士前培训项目
- 批准号:
10197955 - 财政年份:2018
- 资助金额:
$ 32.44万 - 项目类别:
Predoctoral Training Program in Biological Data Science at Brown University
布朗大学生物数据科学博士前培训项目
- 批准号:
10447019 - 财政年份:2018
- 资助金额:
$ 32.44万 - 项目类别:
Novel statistical methods to localize genomic elements underlying adaptive evolution
定位适应性进化背后的基因组元素的新统计方法
- 批准号:
9078921 - 财政年份:2016
- 资助金额:
$ 32.44万 - 项目类别:
Project 1: Incorporating Ethnic and Gender Disparities in Genomic Studies of Disease
项目 1:将种族和性别差异纳入疾病基因组研究
- 批准号:
9433665 - 财政年份:
- 资助金额:
$ 32.44万 - 项目类别:
相似海外基金
African Rare Diseases Initiative (ARDI): Advancing Genomic Medicine through rare diseases research in Africa
非洲罕见疾病倡议 (ARDI):通过非洲罕见疾病研究推进基因组医学
- 批准号:
10674660 - 财政年份:2023
- 资助金额:
$ 32.44万 - 项目类别:
French foreign policy in West-Africa revisited: examining French monetary and military influence on African sovereignty
重新审视法国在西非的外交政策:审视法国货币和军事对非洲主权的影响
- 批准号:
2887041 - 财政年份:2023
- 资助金额:
$ 32.44万 - 项目类别:
Studentship
Seamen from the African Indian Ocean, 1880s-1940s: Transnational Labour Relations between Africa and Europe in Colonial Times
来自非洲印度洋的海员,1880 年代至 1940 年代:殖民时期非洲和欧洲之间的跨国劳资关系
- 批准号:
23K00793 - 财政年份:2023
- 资助金额:
$ 32.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Role of Kaiso as a predictive breast cancer biomarker in Africa and across the African Diaspora
Kaiso 作为非洲和整个非洲侨民的乳腺癌预测生物标志物的作用
- 批准号:
10347874 - 财政年份:2022
- 资助金额:
$ 32.44万 - 项目类别:
Pan-African Frontiers And Identities: The Remaking Of Africa In World Politics
泛非边界和身份:世界政治中非洲的重塑
- 批准号:
MR/W012103/1 - 财政年份:2022
- 资助金额:
$ 32.44万 - 项目类别:
Fellowship
Southern African Research Consortium for Mental health INTegration (S-MhINT)-Research and capacity building consortium to strengthen mental health integration in South Africa, Mozambique and Tanzania.
南部非洲心理健康一体化研究联盟 (S-MhINT) - 研究和能力建设联盟,旨在加强南非、莫桑比克和坦桑尼亚的心理健康一体化。
- 批准号:
10613603 - 财政年份:2022
- 资助金额:
$ 32.44万 - 项目类别:
The timing and geography of African ape and human origins: New evidence from Europe, Africa and Asia.
非洲猿和人类起源的时间和地理:来自欧洲、非洲和亚洲的新证据。
- 批准号:
RGPIN-2016-06761 - 财政年份:2021
- 资助金额:
$ 32.44万 - 项目类别:
Discovery Grants Program - Individual
The definition of "Africa" and the concept of "race" in Pan-African movements
“非洲”的定义与泛非运动中的“种族”概念
- 批准号:
20K22009 - 财政年份:2020
- 资助金额:
$ 32.44万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Re-examining the anti-colonial discourses in former Portuguese Africa: How African press argued
重新审视前葡属非洲的反殖民话语:非洲媒体如何争论
- 批准号:
20K12353 - 财政年份:2020
- 资助金额:
$ 32.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The timing and geography of African ape and human origins: New evidence from Europe, Africa and Asia.
非洲猿和人类起源的时间和地理:来自欧洲、非洲和亚洲的新证据。
- 批准号:
RGPIN-2016-06761 - 财政年份:2020
- 资助金额:
$ 32.44万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




