Protein Phosphatase 1 Holoenzyme Formation and Subunit Exchange
蛋白磷酸酶 1 全酶形成和亚基交换
基本信息
- 批准号:9985412
- 负责人:
- 金额:$ 4.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-10 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseActive SitesAdaptor Signaling ProteinAllosteric RegulationAreaBindingBinding ProteinsBiochemicalBiochemistryBiochemistry and Cellular BiologyBiogenesisBiologicalBiological ProcessBiologyBiophysicsCell Growth ProcessesCell physiologyCellsCellular biologyComplexCoupledCysteineDataDevelopmentDiseaseDrug TargetingEnzymesEssential GenesEukaryotaEukaryotic CellExcisionGoalsHealthHistidineHoloenzymesHydrolysisIndividualKnowledgeLaboratoriesLocationMalignant NeoplasmsManuscriptsMetalsMitosisModelingMolecularMolecular ChaperonesNMR SpectroscopyPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPost-Translational Protein ProcessingProcessProtein DephosphorylationProtein Serine/Threonine PhosphataseProtein phosphataseProteinsPublishingReactionRegulationResearchResearch PersonnelResearch Project GrantsRoleRouteSerine/Threonine PhosphorylationSignal TransductionStructural ProteinStructureSubstrate SpecificityTechniquesTestingThreonine Phosphorylation SiteTimeWorkX-Ray CrystallographyYeastsbasedimerexperimental studygenetic regulatory proteinhuman diseasein vivoinhibitor/antagonistinorganic phosphateinsightnovelnovel strategiesprotein phosphatase inhibitor-1protein structurereconstitutionstructural biologyubiquitin-protein ligase
项目摘要
ABSTRACT
Phosphorylation is one of the most ubiquitous, reversible posttranslational modifications in cells. The enzymes
responsible for controlling the phosphorylation state of the cell are kinases, which catalyze the transfer of the
γ-phosphate moiety of ATP to substrates, and phosphatases, which catalyze the reverse hydrolysis reaction,
the removal of the phosphate moiety from phosphorylated substrates. Thus, phosphatases dynamically reverse
the effects of kinases. Because phosphorylation is critical for all biological processes from cell growth to
differentiation to development, the location and duration of the reciprocal actions of kinases and phosphatases
must be exquisitely regulated both temporally and spatially within the cell. Consequently, when this tight
regulation is disrupted, dysregulation of phosphorylation signaling ensues and the consequence is most often
disease. Here we are investigating the cellular assembly of the serine/threonine protein phosphatase 1 (PP1).
The regulatory protein SDS22 and the inhibitor-3 (I-3) have been proposed to be critical for this process, by
functioning in a chaperone-like fashion. Using biochemistry and structural biology we show that this model is
incorrect. Rather SDS22 and I-3 can individually function as a PP1 inhibitor. However, SDS22 inhibits PP1 via
a completely novel mechanism. As we show, SDS22 unexpectedly distorts the PP1 active site so substrates
can no longer bind. Thus as long as SDS22 is bound to PP1, PP1 is inactive. I-3 binds metals and thus can
transport metals, which are necessary for PP1 activity, to the PP1 active site. Upon metal loading, I-3 is
released in a p37-dependent manner from PP1. However, despite I-3 metal-loading, SDS22 continues to
maintain PP1 in an inactive state. Thus, SDS22 is the key regulator of PP1 activity in cells. The presented
research project uses a powerful integrated approach that combines X-ray crystallography and NMR
spectroscopy with biochemical and cell biology experiments to obtain novel insights into the molecular
mechanisms used by these regulators to control PP1 activity. We will: 1) determine the structures of the
regulators in their free forms, 2) determine the structures of the PP1 dimeric and trimeric holoenzymes and 3)
determine how these essential complexes direct and regulate PP1 signaling in cells. We will then leverage
these structures to elucidate, at a molecular level, the biological functions and modes of action of these key
PP1 holoenzymes. Because PP1 holoenzymes have critical roles in human diseases, the proposed work will
provide novel strategies for selectively inhibiting PP1 activity by targeting the PP1 holoenzyme formation and
subunit exchange, which is essential for understanding how distinct PPPs contribute to disease.
摘要
磷酸化是细胞中最普遍的、可逆的翻译后修饰之一。的酶
负责控制细胞磷酸化状态的是激酶,其催化磷酸化酶的转移。
ATP的γ-磷酸部分转化为底物和磷酸酶,催化逆水解反应,
从磷酸化底物中除去磷酸部分。因此,磷酸酶动态逆转
激酶的作用。因为磷酸化对于从细胞生长到
分化到发育,激酶和磷酸酶相互作用的位置和持续时间
必须在细胞内的时间和空间上进行精细的调节。因此,当这种紧
调节被破坏,磷酸化信号传导的失调加剧,其结果是最常见的
疾病在这里,我们正在研究丝氨酸/苏氨酸蛋白磷酸酶1(PP 1)的细胞组装。
调节蛋白SDS 22和抑制剂-3(I-3)已被认为是这一过程的关键,
像监护人一样工作使用生物化学和结构生物学,我们表明,这个模型是
不正确.相反,SDS 22和I-3可以单独作为PP 1抑制剂发挥作用。然而,SDS 22通过以下途径抑制PP 1:
一种全新的机制正如我们所展示的,SDS 22出乎意料地扭曲了PP 1活性位点,
不能再束缚了。因此,只要SDS 22与PP 1结合,PP 1就无活性。I-3结合金属,因此可以
将PP 1活性所必需的金属转运到PP 1活性位点。在金属负载时,I-3是
以p37依赖的方式从PP 1释放。然而,尽管I-3金属负载,SDS 22继续
保持PP 1处于非活动状态。因此,SDS 22是细胞中PP 1活性的关键调节因子。所呈现的
一个研究项目使用了一种强大的综合方法,结合了X射线晶体学和NMR
光谱与生物化学和细胞生物学实验,以获得新的见解,
这些调节器用于控制PP 1活性的机制。我们将:1)确定
自由形式的调节剂,2)确定PP 1二聚体和三聚体全酶的结构和3)
确定这些基本复合物如何指导和调节细胞中的PP 1信号传导。然后我们会利用
在分子水平上阐明这些关键结构的生物学功能和作用模式,
PP 1全酶。由于PP 1全酶在人类疾病中具有关键作用,因此拟议的工作将
提供了通过靶向PP 1全酶形成来选择性抑制PP 1活性的新策略,
亚基交换,这对于理解不同的PPP如何促进疾病至关重要。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Peti其他文献
Wolfgang Peti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Peti', 18)}}的其他基金
Serine/Threonine Phosphatases in Neurological Diseases
神经系统疾病中的丝氨酸/苏氨酸磷酸酶
- 批准号:
10583671 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Shared Tundra screening cryo-EM for New England
新英格兰共享 Tundra 冷冻电镜筛查
- 批准号:
10413473 - 财政年份:2022
- 资助金额:
$ 4.39万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌中β-内酰胺抗性酶的机制和活性
- 批准号:
10624757 - 财政年份:2019
- 资助金额:
$ 4.39万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌中β-内酰胺抗性酶的机制和活性
- 批准号:
10391315 - 财政年份:2019
- 资助金额:
$ 4.39万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌β-内酰胺抗性酶的机制和活性
- 批准号:
9927573 - 财政年份:2019
- 资助金额:
$ 4.39万 - 项目类别:
Dynamics & energetics of p38a kinase regulation by ligands
动力学
- 批准号:
8608555 - 财政年份:2013
- 资助金额:
$ 4.39万 - 项目类别:
Dynamics & energetics of p38a kinase regulation by ligands
动力学
- 批准号:
8436569 - 财政年份:2013
- 资助金额:
$ 4.39万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 4.39万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 4.39万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




