Protein Phosphatase 1 Holoenzyme Formation
蛋白磷酸酶 1 全酶形成
基本信息
- 批准号:10793305
- 负责人:
- 金额:$ 13.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseBiochemicalBiogenesisBiologicalBiological ProcessBiologyCellsCellular biologyComplexDataDevelopmentDiseaseDissociationEnzymesEssential GenesEukaryotaExcisionHoloenzymesHydrolysisIndividualLocationMitosisMolecularPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPost-Translational Protein ProcessingProtein DephosphorylationProtein phosphataseProteinsReactionRegulationResearchResearch PersonnelResearch Project GrantsRoleSignal TransductionStructureWorkYeastscell growthdimerexperimental studyhuman diseaseinhibitorinorganic phosphateinsightnovelnovel strategiesstructural biologyubiquitin-protein ligase
项目摘要
ABSTRACT
Phosphorylation is one of the most ubiquitous, reversible posttranslational modifications in cells. The enzymes
responsible for controlling the phosphorylation state of the cell are kinases, which catalyze the transfer of the
γ-phosphate moiety of ATP to substrates, and phosphatases, which catalyze the reverse hydrolysis reaction,
the removal of the phosphate moiety from phosphorylated substrates. Thus, phosphatases dynamically reverse
the effects of kinases. Because phosphorylation is critical for all biological processes from cell growth to
differentiation to development, the location and duration of the reciprocal actions of kinases and phosphatases
must be exquisitely regulated both temporally and spatially within the cell. Consequently, when this tight
regulation is disrupted, dysregulation of phosphorylation signaling ensues and the consequence is most often
disease. Deletion of either one of two PP1 regulators—SDS22 (PPP1R7) or Inhibitor-3 (I3; PPP1R11 or Ypi1
in yeast)—is lethal in yeast (essential genes), highlighting their biological significance. However, since their
discovery, different biological roles have been assigned to SDS22 and I3, including roles in mitosis (SDS22),
E3 ligase functionality (I3), PP1 biogenesis, among others. Thus, while it is clear that SDS22 and I3 are
essential PP1 regulators, their true biological function(s) and especially their mechanism(s) of action are still
unknown. This has hindered progress in understanding their roles in PP1 biology. In cells, these proteins form
both heterodimeric (SDS22:PP1 and I3:PP1) and a heterotrimeric (SDS22:I3:PP1; SIP) PP1 complex. The
structure and function(s) of the individual dimeric complexes, if and how the structure and function(s) of the
trimeric complex differs from those of the dimeric complexes and the role(s) of each complex in PP1
holoenzyme formation are major questions in the field. Further, additional data suggest that dissociation of the
SIP complex requires the AAA+ ATPase p37/p97. However, the molecular details of SIP complex dissociation
have also remained elusive. The presented research project uses a powerful integrated approach that
combines structural biology with biochemical and cell biology experiments to obtain novel insights into the
molecular mechanisms used by these regulators to control PP1 activity and direct PP1 holoenzyme assembly.
Because PP1 holoenzymes have critical roles in human diseases, the proposed work will provide novel
strategies for selectively inhibiting PP1 activity by targeting the PP1 holoenzyme formation and subunit
exchange, which is essential for understanding how distinct PPPs contribute to disease.
摘要
磷酸化是细胞中最普遍的、可逆的翻译后修饰之一。的酶
负责控制细胞磷酸化状态的是激酶,其催化磷酸化酶的转移。
ATP的γ-磷酸部分转化为底物,磷酸酶催化逆水解反应,
从磷酸化底物中除去磷酸部分。因此,磷酸酶动态逆转
激酶的作用。因为磷酸化对于从细胞生长到
分化到发育,激酶和磷酸酶相互作用的位置和持续时间
必须在细胞内的时间和空间上进行精细的调节。因此,当这种紧
调节被破坏,磷酸化信号传导的失调加剧,其结果是最常见的
疾病缺失两种PP 1调节剂之一-SDS 22(PPP 1 R7)或抑制剂-3(I3; PPP 1 R11或Ypi 1
在酵母中)-在酵母中是致命的(必需基因),突出了它们的生物学意义。然而,由于他们
发现,SDS 22和I3具有不同的生物学作用,包括在有丝分裂中的作用(SDS 22),
E3连接酶功能性(I3)、PP 1生物发生等。因此,虽然很明显SDS 22和I3是
基本的PP 1调节剂,它们真正的生物学功能,尤其是它们的作用机制,仍然是
未知这阻碍了对它们在PP 1生物学中作用的理解。在细胞中,这些蛋白质
异二聚体(SDS 22:PP 1和I3:PP 1)和异三聚体(SDS 22:I3:PP 1; SIP)PP 1复合物。的
单个二聚复合物的结构和功能,如果以及如何改变二聚复合物的结构和功能,
三聚体复合物与二聚体复合物的不同以及每个复合物在PP 1中的作用
全酶形成是该领域的主要问题。此外,额外的数据表明,
SIP复合物需要AAA+ ATP酶p37/p97。然而,SIP复合物解离的分子细节
也依然难以捉摸所提出的研究项目使用了一种强大的综合方法,
结合结构生物学与生物化学和细胞生物学实验,以获得新的见解,
这些调节因子用于控制PP 1活性和指导PP 1全酶组装的分子机制。
由于PP 1全酶在人类疾病中具有关键作用,因此所提出的工作将提供新的
通过靶向PP 1全酶形成和亚基选择性抑制PP 1活性的策略
这对于理解不同的购买力平价如何促成疾病至关重要。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural mechanism for inhibition of PP2A-B56α and oncogenicity by CIP2A.
CIP2A 抑制 PP2A-B56α 和致癌性的结构机制。
- DOI:10.1038/s41467-023-36693-9
- 发表时间:2023-02-28
- 期刊:
- 影响因子:16.6
- 作者:Pavic, Karolina;Gupta, Nikhil;Omella, Judit Domenech;Derua, Rita;Aakula, Anna;Huhtaniemi, Riikka;Maatta, Juha A.;Hofflin, Nico;Okkeri, Juha;Wang, Zhizhi;Kauko, Otto;Varjus, Roosa;Honkanen, Henrik;Abankwa, Daniel;Kohn, Maja;Hytonen, Vesa P.;Xu, Wenqing;Nilsson, Jakob;Page, Rebecca;Janssens, Veerle;Leitner, Alexander;Westermarck, Jukka
- 通讯作者:Westermarck, Jukka
The SDS22:PP1:I3 complex: SDS22 binding to PP1 loosens the active site metal to prime metal exchange.
- DOI:10.1016/j.jbc.2023.105515
- 发表时间:2024-01
- 期刊:
- 影响因子:4.8
- 作者:Choy, Meng S;Srivastava, Gautam;Robinson, Lucy C;Tatchell, Kelly;Page, Rebecca;Peti, Wolfgang
- 通讯作者:Peti, Wolfgang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Peti其他文献
Wolfgang Peti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Peti', 18)}}的其他基金
Serine/Threonine Phosphatases in Neurological Diseases
神经系统疾病中的丝氨酸/苏氨酸磷酸酶
- 批准号:
10583671 - 财政年份:2023
- 资助金额:
$ 13.71万 - 项目类别:
Shared Tundra screening cryo-EM for New England
新英格兰共享 Tundra 冷冻电镜筛查
- 批准号:
10413473 - 财政年份:2022
- 资助金额:
$ 13.71万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌中β-内酰胺抗性酶的机制和活性
- 批准号:
10624757 - 财政年份:2019
- 资助金额:
$ 13.71万 - 项目类别:
Protein Phosphatase 1 Holoenzyme Formation and Subunit Exchange
蛋白磷酸酶 1 全酶形成和亚基交换
- 批准号:
9985412 - 财政年份:2019
- 资助金额:
$ 13.71万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌中β-内酰胺抗性酶的机制和活性
- 批准号:
10391315 - 财政年份:2019
- 资助金额:
$ 13.71万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌β-内酰胺抗性酶的机制和活性
- 批准号:
9927573 - 财政年份:2019
- 资助金额:
$ 13.71万 - 项目类别:
Dynamics & energetics of p38a kinase regulation by ligands
动力学
- 批准号:
8608555 - 财政年份:2013
- 资助金额:
$ 13.71万 - 项目类别:
Dynamics & energetics of p38a kinase regulation by ligands
动力学
- 批准号:
8436569 - 财政年份:2013
- 资助金额:
$ 13.71万 - 项目类别:
相似海外基金
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2022-03971 - 财政年份:2022
- 资助金额:
$ 13.71万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2021
- 资助金额:
$ 13.71万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2020
- 资助金额:
$ 13.71万 - 项目类别:
Discovery Grants Program - Individual
The biochemical niche of nuclear small RNA biogenesis machinery
核小RNA生物发生机制的生化生态位
- 批准号:
538658-2019 - 财政年份:2019
- 资助金额:
$ 13.71万 - 项目类别:
University Undergraduate Student Research Awards
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2019
- 资助金额:
$ 13.71万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2018
- 资助金额:
$ 13.71万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and structural studies of early eukaryotic ribosome biogenesis
早期真核核糖体生物发生的生化和结构研究
- 批准号:
487246-2016 - 财政年份:2017
- 资助金额:
$ 13.71万 - 项目类别:
Postgraduate Scholarships - Doctoral
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2017
- 资助金额:
$ 13.71万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2016
- 资助金额:
$ 13.71万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and structural studies of early eukaryotic ribosome biogenesis
早期真核核糖体生物发生的生化和结构研究
- 批准号:
487246-2016 - 财政年份:2016
- 资助金额:
$ 13.71万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




