Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌中β-内酰胺抗性酶的机制和活性
基本信息
- 批准号:10391315
- 负责人:
- 金额:$ 71.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-09 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAmino Acid SubstitutionAntibiotic ResistanceAntibioticsArizonaBindingBiochemistryBiological AssayBiomolecular Nuclear Magnetic ResonanceCellular biologyCharacteristicsChemicalsChemistryClinicalCommunicable DiseasesCommunity-Acquired InfectionsComplexCoupledDangerousnessDataDevelopmentDoctor of PhilosophyEnterococcusEnterococcus faecalisEnterococcus faeciumEnzymesEssential Amino AcidsFamilyFutureGoalsHospitalsIn VitroInfectionInferiorKineticsKnowledgeLabelLipidsMediatingMicrobiologyMolecularMonobactamsMutationN-terminalNMR SpectroscopyNosocomial InfectionsPenicillin ResistancePenicillin-Binding ProteinsPeptidoglycanPeptidyltransferasePredispositionProcessProtein DynamicsProteinsPublishingReagentRegulationResearch PersonnelResistanceRhode IslandRiceRoleSchemeStaphylococcus aureusStructureTestingTherapeuticTimeToxic effectTranslatingUniversitiesVariantanalogantimicrobialbasebeta-Lactam Resistancebeta-Lactamschemical synthesiscrosslinkdesignexperimental studyin vitro activityin vivoinsightinterdisciplinary approachmembermethicillin resistant Staphylococcus aureusmimeticsmultidisciplinarynovelpeptide chemical synthesisstructural biologysuicide substratessynergismtranspeptidation
项目摘要
Enterococci (e.g. E. faecalis and E. faecium) cause severe and often fatal nosocomial and community-acquired
infections. Therapy of enterococcal infections is frequently compromised by their decreased susceptibility
(increased resistance) to many classes of antibiotics, including β-lactams. This resistance is overwhelmingly
attributable to the expression of low-affinity penicillin-binding proteins PBP4 (E. faecalis) and PBP5 (E. faecium),
both of which are members of a family of low-affinity PBPs that also includes PBP2a from methicillin-resistant S.
aureus. In the clinical setting, E. faecium strains show widespread high-level penicillin resistance due to amino
acid substitutions, while similar highly-resistant E. faecalis strains are rare. Building on our extensive structural
and functional preliminary data, we will leverage the unique synergy of scientific expertise of the investigators to
answer the following key fundamental questions: how do low affinity PBPs bind and catalyze transpeptidation,
how do sequence changes in these PBPs further reduce their affinity for β-lactam antibiotics while retaining their
ability to synthesize peptidoglycan, and what cellular factors beyond low affinity PBP substitutions augment
levels of resistance expressed by clinical strains? To answer these questions, we will pursue four specific aims
that integrate structural biology, chemical synthesis, biochemistry and microbiology. Aim 1 will use structural
biology, especially biomolecular NMR spectroscopy, to determine why PBP5 is an inferior target of β-lactam
antibiotics. Our extensive preliminary data shows that this tour-de-force effort (at ~75 kDa, PBP5 is the second largest
single-chain protein studied using NMR spectroscopy) is not only feasible but, combined with our extensive
crystallographic data, will reveal why β-lactams only poorly inhibit PBP5 and, by extension, the entire family of low
affinity PBPs. Aims 2 and 3 will use newly developed chemical synthesis schemes coupled with structure
and dynamics (NMR spectroscopy) to determine how, at a molecular level, these PBPs catalyze
transpeptidation. We have achieved high-yield syntheses of PBP5-specific pentapeptide precursors and
variants of lipid II, enabling us to use NMR spectroscopy and transpeptidase assays to determine how substrates
bind and ultimately become cross-linked by PBP5. The impact of resistance-causing mutations in PBP5 on
transpeptidase activity will also be determined. Aim 4 will identify the orthogonal factors that contribute to
resistance in E. faecalis. Our preliminary data suggest that E. faecalis PBP2 likely contributes to β-lactam
resistance in the highly resistant LS4828 E. faecalis strain. We will quantify the contribution of PBP2 to LS4828
β-lactam resistance. In parallel, we will use BioID (proximity labeling) to identify PBP4 and PBP2 interacting
proteins (our recently published crystallographic data revealed that the PBP4 N-terminal domains are dynamic
and are likely involved in protein interactions). Together, these studies will reveal the structural and functional
details of enterococcal low-affinity PBP function, providing critical data upon which to base future strategies for
inhibiting these important enzymes.
肠球菌(如E.粪肠球菌E.粪菌)引起严重的和通常致命的医院和社区获得性
感染.肠球菌感染的治疗经常受到其敏感性降低的影响
(增加的耐药性)对许多种类的抗生素,包括β-内酰胺。这种阻力是压倒性的
可归因于低亲和力青霉素结合蛋白PBP 4(E. faecalis)和PBP 5(E.屎),
它们都是低亲和性PBPs家族的成员,该家族还包括来自耐甲氧西林链球菌的PBP 2a。
金黄色。在临床上,E.屎肠菌菌株显示出广泛的高水平的青霉素耐药性,
酸取代,而类似的高抗E.粪菌属菌株很少见。基于我们广泛的结构
和功能性初步数据,我们将利用调查人员科学专业知识的独特协同作用,
回答以下关键的基本问题:低亲和力PBPs如何结合和催化转肽作用,
这些PBPs中的序列变化如何进一步降低它们对β-内酰胺抗生素的亲和力,
合成肽聚糖的能力,以及除了低亲和力PBP取代之外的细胞因子增加了什么
临床菌株的耐药水平?为了回答这些问题,我们将追求四个具体目标
它整合了结构生物学、化学合成、生物化学和微生物学。目标1将使用结构
生物学,特别是生物分子NMR光谱学,以确定为什么PBP 5是β-内酰胺的次要靶标
抗生素我们广泛的初步数据表明,这种巡回演出的努力(在~75 kDa,PBP 5是第二大
单链蛋白质研究使用核磁共振光谱)不仅是可行的,但结合我们广泛的
晶体学数据,将揭示为什么β-内酰胺只能很差地抑制PBP 5,并通过扩展,
亲和PBPs。目标2和3将使用新开发的化学合成方案,
和动力学(核磁共振光谱),以确定如何,在分子水平上,这些PBPs催化
转肽作用我们已经实现了PBP 5特异性五肽前体的高产率合成,
脂质II的变体,使我们能够使用NMR光谱和转肽酶测定,以确定如何底物
结合并最终被PBP 5交联。PBP 5中引起耐药的突变对
还将测定转肽酶活性。目标4将确定正交因素,有助于
E.粪便我们的初步数据表明,E.粪杆菌PBP 2可能导致β-内酰胺
高抗菌株LS 4828 E.粪菌株我们将量化PBP 2对LS 4828的贡献
β-内酰胺耐药。同时,我们将使用BioID(邻近标记)来鉴定PBP 4和PBP 2相互作用,
蛋白质(我们最近发表的晶体学数据显示,PBP 4 N-末端结构域是动态的,
并且可能参与蛋白质相互作用)。总之,这些研究将揭示出
肠球菌低亲和力PBP功能的详细信息,为未来的战略提供了关键数据,
抑制这些重要的酶。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Peti其他文献
Wolfgang Peti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Peti', 18)}}的其他基金
Serine/Threonine Phosphatases in Neurological Diseases
神经系统疾病中的丝氨酸/苏氨酸磷酸酶
- 批准号:
10583671 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Shared Tundra screening cryo-EM for New England
新英格兰共享 Tundra 冷冻电镜筛查
- 批准号:
10413473 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌中β-内酰胺抗性酶的机制和活性
- 批准号:
10624757 - 财政年份:2019
- 资助金额:
$ 71.92万 - 项目类别:
Protein Phosphatase 1 Holoenzyme Formation and Subunit Exchange
蛋白磷酸酶 1 全酶形成和亚基交换
- 批准号:
9985412 - 财政年份:2019
- 资助金额:
$ 71.92万 - 项目类别:
Mechanism and activity of beta-lactam resistant enzymes in E. faecium and E. faecalis
屎肠球菌和粪肠球菌β-内酰胺抗性酶的机制和活性
- 批准号:
9927573 - 财政年份:2019
- 资助金额:
$ 71.92万 - 项目类别:
Dynamics & energetics of p38a kinase regulation by ligands
动力学
- 批准号:
8608555 - 财政年份:2013
- 资助金额:
$ 71.92万 - 项目类别:
Dynamics & energetics of p38a kinase regulation by ligands
动力学
- 批准号:
8436569 - 财政年份:2013
- 资助金额:
$ 71.92万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Continuing Grant