Project 2: Spatial Architecture of Tumor-Mediated Immunosuppression
项目2:肿瘤介导的免疫抑制的空间架构
基本信息
- 批准号:9982082
- 负责人:
- 金额:$ 37.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAntibodiesAntigen PresentationApoptosisArchitectureAreaBar CodesBiological AssayBone MarrowCancer ModelCell CommunicationCell CycleCell SurvivalCell physiologyCellsChelating AgentsClinicalCommunitiesCore FacilityCytometryDNA DamageDNA IntercalationDataData SetDatabasesDevelopmentDiagnosticDiseaseDisease modelEnsureEnvironmentEpigenetic ProcessEpitopesEventFluorescenceFutureGenetic TranscriptionGenomicsGoalsHead and Neck Squamous Cell CarcinomaHourHumanImageImaging DeviceImmuneImmune systemImmunologic SurveillanceImmunologyImmunosuppressionImmunotherapyIn SituIndividualInternationalIsotope LabelingIsotopesKnowledgeLaboratoriesLanthanoid Series ElementsLymph Node TissueMalignant NeoplasmsMapsMeasuresMediatingMedicineMessenger RNAMetabolismMetalsMetastatic Neoplasm to Lymph NodesMinorModalityMultiplexed Ion Beam ImagingNeckNeoplasm MetastasisOutcomePaperPeriodicityPharmacologic SubstancePhasePhenotypePolymersPopulationProcessProteinsProteomicsPublishingRNAReagentRecording of previous eventsSamplingSeriesSignal TransductionSignaling MoleculeSliceSolid NeoplasmSquamous cell carcinomaStainsSurfaceSystemSystems BiologyTechnologyTherapeuticTimeTissue imagingTissuesTumor Cell InvasionVisualizationWorkadvanced diseasebasecancer imagingcarcinogenesiscell typecytokinedesigndraining lymph nodedrug developmenthigh dimensionalityinsightinstrumentinterestlymph nodesmalemelanomamodel buildingmouse modelneoplastic cellquantitative imagingrecruitrole modeltooltumortumor growthtumor progression
项目摘要
ABSTRACT/SUMMARY – Project 2: Spatial Architecture of Tumor-Mediated Immunosuppression
Cancer progression is a disease of increasing disorder—yet a form of disorder with ordained stages of
development. Beyond the internal genomic and epigenetic events that occur to drive a cell towards outright
carcinogenesis and then metastasis, there co-exist the ordered events a cancer imposes on immune cells it
encounters on its progression towards advanced disease. Induction of tolerance, avoidance of apoptosis, and
even recruitment of the immune system to aid a tumor's growth are all poorly understood processes. We
propose to undertake deep phenotyping of the 2D and 3D architecture of the tumor-lymph node micro-
environment in human cancer & murine model counterparts —wherein it is thought that some of the initial
phases of the tumor's avoidance and recruitment mechanisms are first implemented. How is the architecture
of the immune environment disrupted in the face of tumor metastasis? Are their micro-communities changed
(as defined by particular cell-cell interactions) whose presence or absence defines clinical outcomes during
progression of the tumor? To this end we have developed a technology (ABSeq) that enables us to sensitively
and quantitatively image tumors with 60 markers per 3-5 hours (scalable to 480 in a time-dependent manner).
These markers are selected from a range of intracellular or surface epitopes (recognized by antibodies) or
RNAs. The hypothesis is that an orchestrated corruption of immune surveillance is initiated by
cancers as they progress, and that the micro-scale architecture of the lymph node (by way of which
cells are talking to whom and what broader effects occur across the lymph node and beyond) is
disrupted in a defined manner. Understanding of this process will result in mechanistic and therapeutic
insights that are unavailable by other analysis modalities. Databases of 2D and 3D microenvironments will be
publicly created and mined for associations that define the architectural changes in draining lymph nodes that
occur as tumors progress and initiate tolerance. Perturbations that include immunotherapies will be
implemented on the murine models to determine the further architectural changes that occur post therapy.
Together the information will provide a first ever deep profiling of every major immune cell subset in lymph
nodes as they re-architect themselves during metastatic establishment.
摘要/总结-项目2:肿瘤介导的免疫抑制的空间结构
癌症进展是一种疾病的增加障碍,但一种形式的障碍与预定的阶段,
发展除了内部的基因组和表观遗传事件,发生驱动细胞彻底
在癌症发生和转移的过程中,癌症对免疫细胞施加的有序事件共存,
在向晚期疾病进展时遇到的困难。诱导耐受性,避免细胞凋亡,以及
甚至免疫系统的募集来帮助肿瘤的生长都是知之甚少的过程。我们
建议对肿瘤淋巴结微结构的2D和3D结构进行深度表型分析,
在人类癌症中的环境和鼠模型对应物-其中认为一些初始的
首先实施肿瘤的回避和募集机制的阶段。建筑怎么样
肿瘤转移时免疫环境的破坏?他们的微社区是否改变了
(as由特定的细胞-细胞相互作用定义),其存在或不存在定义了在治疗期间的临床结果。
肿瘤的发展?为此,我们开发了一种技术(ABSeq),使我们能够灵敏地
并且每3-5小时用60个标记物对肿瘤进行定量成像(以时间依赖的方式可扩展到480个)。
这些标志物选自一系列细胞内或表面表位(被抗体识别)或
RNA。假设是,免疫监视的精心策划的腐败是由以下因素引发的:
癌症,因为他们的进展,并认为淋巴结的微观结构(通过它,
细胞在和谁说话,以及在淋巴结内外发生了什么更广泛的影响)
以一种确定的方式被破坏。了解这一过程将导致机械和治疗
其他分析模式无法提供的洞察力。2D和3D微环境的数据库将被
公开创建和挖掘的关联,定义引流淋巴结的架构变化,
随着肿瘤的进展而发生并引发耐受性。包括免疫疗法在内的干扰将是
在鼠模型上实施,以确定治疗后发生的进一步结构变化。
这些信息将共同提供淋巴中每个主要免疫细胞亚群的首次深度分析
节点,因为它们在转移建立期间重新构建自己。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARRY P NOLAN其他文献
GARRY P NOLAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARRY P NOLAN', 18)}}的其他基金
Harmonizing single cell and spatial transcriptomics across HuBMAP organs to generate reproducible and robust maps
协调 HuBMAP 器官的单细胞和空间转录组学,生成可重复且稳健的图谱
- 批准号:
10818848 - 财政年份:2022
- 资助金额:
$ 37.29万 - 项目类别:
Stanford Tissue Mapping Center - STELLAR
斯坦福大学组织绘图中心 - STELLAR
- 批准号:
10818846 - 财政年份:2022
- 资助金额:
$ 37.29万 - 项目类别:
Spatial-Genomic Integrative Multi-Species Analysis of Lymph Node Metastasis
淋巴结转移的空间基因组综合多物种分析
- 批准号:
10401199 - 财政年份:2021
- 资助金额:
$ 37.29万 - 项目类别:
Application for Supplemental Funding from HUBMAP
向 HUBMAP 申请补充资金
- 批准号:
10228511 - 财政年份:2020
- 资助金额:
$ 37.29万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Research Grant