Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
基本信息
- 批准号:10353393
- 负责人:
- 金额:$ 53.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlginatesAllograftingArchitectureAreaAutologous TransplantationBiocompatible MaterialsBiomimeticsBlood VesselsCell SurvivalCellsCharacteristicsCicatrixClinicalCollagenComplexElderlyElectrophysiology (science)ElectrospinningEndothelial CellsEndotheliumEngineeringExtracellular MatrixFibrosisFunctional RegenerationGelatinGrowthGrowth FactorHematopoieticHydrogelsImageImmune responseImpairmentImplantInfectionInjuryInsulin-Like Growth Factor IKineticsLasersMethodsModelingMorbidity - disease rateMuscleMuscle FibersMuscle functionMuscular AtrophyMusculoskeletal DiseasesMyoblastsNerve RegenerationNeuromuscular JunctionNude MiceOperative Surgical ProceduresPainPatientsPersonsPhysiologicalPopulationPositioning AttributePrintingProductionProtocols documentationQuality of lifeRecoveryRegenerative MedicineRegenerative capacityReproducibilitySchemeSiteSkeletal MuscleSoldierSurgical suturesSystemTechniquesTestingTherapeuticThickTissue GraftsTissue constructsTissuesTraumatic injuryVascular Endothelial CellVascular blood supplyVascular regenerationVascularizationangiogenesisbasebioinkbiomaterial compatibilitybioprintingcell assemblyclinically relevantdirected differentiationdisabilityfunctional disabilityfunctional restorationhealinghuman pluripotent stem cellimplantationimprovedin vivoinduced pluripotent stem cellinjuredmechanical propertiesmigrationmouse modelmuscle engineeringmuscle formmuscle regenerationnanofibernerve injuryneuromuscularpersonalized medicinephysical propertypoly(glycerol-sebacate)precursor cellquadriceps muscleregeneration functionrepairedrestorationsatellite cellscaffoldself assemblyskeletal muscle wastingstem cell deliverystem cell differentiationsubcutaneoustechnology developmenttraumatic eventtreadmillvehicular accidentvolumetric muscle loss
项目摘要
Project Summary
Volumetric muscle loss (VML) usually occurs following traumatic injury and results in a composite loss of
muscle mass. These injuries manifest in decreased strength and functional impairments. Clinically, these
injuries often heal with fibrosis, as opposed to skeletal muscle regeneration. Current existing therapeutic
options are also insufficient for VML treatment, and complications are often associated with surgical repair
including nerve injury, excessive immune response, infection, scarring, and limitations of tissue graft supply.
Indeed, natural healing and surgical procedures are inefficient in restoring the functionality of injured muscles,
resulting in a poor quality of life. Therefore, developing clinically relevant three-dimensional (3D) tissue using
patient-specific genetically identical cells has emerged as a potential solution to address the above issues. To
achieve this aim, there are two existing main challenges. The first challenge is obtaining large amounts of
patient-specific genetically identical cells. The use of human pluripotent stem cells (hiPSCs) differentiated to
the muscle lineage represents a promising candidate to build upon personalized therapy. However, directing
the differentiation of hiPSCs to the muscle fate along with reproducible differentiation schemes has proven to
be challenging. The second challenge is developing a highly organized and vascularized 3D skeletal muscle
tissue to maintain the viability of cells inside thick tissue constructs via engineered vessel networks.
Furthermore, the fabricated tissues have to strongly integrate into injured site via surgical methods. To address
these challenges, we plan to develop a suturable 3D vascularized muscle tissue from hiPSC-derived myogenic
precursor cells (hiPSC-MPCs) embedded in biomaterials using bioprinting techniques. We will optimize the
recently developed protocols allowing efficient production of functional myofibers from hiPSCs in hydrogels
with tunable mechanical properties and degradable profiles, which mimic the extracellular matrix (ECM) of
native skeletal muscle tissue. To create biomimetic vascularized muscle constructs, a multi-material embedded
bioprinting technique will be used to precisely control the positions of the vascular network and aligned muscle
fibers with biologically relevant architectures. With the conventional bioprinting system, it is difficult to precisely
control the materials’ position in Z directions to create freestanding hydrogel architectures. Also, to achieve
prolonged retention of implants into the injured site and to improve muscle regeneration, a muscle growth
factor (IGF-1) laden suturable graft will be developed. hiPSC-MPCs-laden constructs will be printed on the
suturable graft consisting of IGF-1-laden PGS/GelMA substrates using electrospinning.
项目摘要
容积性肌肉丧失(VML)通常发生在创伤后,导致综合的肌肉丧失
肌肉发达。这些损伤表现为力量下降和功能障碍。在临床上,这些
损伤通常以纤维化愈合,而不是骨骼肌再生。目前已有的治疗方法
VML治疗的选择也不充分,并发症往往与手术修复有关
包括神经损伤、免疫反应过度、感染、疤痕形成和组织移植物供应的限制。
事实上,自然愈合和外科手术在恢复受伤肌肉的功能方面效率低下,
导致生活质量不佳。因此,开发临床相关的三维(3D)组织使用
患者特有的基因相同的细胞已经成为解决上述问题的潜在解决方案。至
要实现这一目标,目前存在两个主要挑战。第一个挑战是获得大量的
患者特有的基因相同的细胞。人多能干细胞(HiPSCs)分化为
肌肉血统代表了个性化治疗的一个很有前途的候选者。然而,执导
HiPSCs对肌肉命运的分化以及可重复的分化方案已被证明
勇于挑战。第二个挑战是开发一种高度组织化和血管化的3D骨骼肌
组织通过工程化的血管网络维持厚组织结构内细胞的生存能力。
此外,制作的组织必须通过手术方法强烈整合到损伤部位。致信地址
面对这些挑战,我们计划从HiPSC来源的肌源性组织中开发一种可缝合的3D血管肌肉组织
利用生物打印技术将前体细胞(hiPSC-MPC)嵌入生物材料中。我们将优化
最近开发的方案允许在水凝胶中从HiPSCs高效地生产功能性肌纤维
具有可调的机械性能和可降解的轮廓,模拟细胞外基质(ECM)
天然骨骼肌组织。为了创造仿生的血管化肌肉结构,嵌入了多种材料
将使用生物打印技术来精确控制血管网络和排列的肌肉的位置
具有生物相关结构的纤维。使用传统的生物打印系统,很难精确地
控制材料在Z方向上的位置以创建独立的水凝胶结构。此外,要实现
延长植入物在损伤部位的滞留时间,促进肌肉再生,促进肌肉生长
将开发负载因子(IGF-1)的可缝合移植物。加载HiPSC-MPC的构造将打印在
可缝合移植物,由携带IGF-1的PGS/GelMA底物组成,使用静电纺丝。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su Ryon Shin其他文献
Su Ryon Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su Ryon Shin', 18)}}的其他基金
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10576353 - 财政年份:2021
- 资助金额:
$ 53.65万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10425405 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
Programmable multimaterial bioprinting of 3D vascularized tissue constructs
3D 血管化组织结构的可编程多材料生物打印
- 批准号:
9788446 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10212963 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Research Grant