Oxygen generating bioinks for 3D printed bone implants

用于 3D 打印骨植入物的产氧生物墨水

基本信息

  • 批准号:
    10425405
  • 负责人:
  • 金额:
    $ 37.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-17 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Abstract Musculoskeletal tissue injuries are a leading cause of disability in the United States (US), yet there are only a few viable options for patients suffering from bone degeneration. One of the major challenges in this field is nonunion formation, which is the permanent failure of bone fracture healing. Current therapies such as bone fixation or bone grafting are often ineffective, painful, invasive, costly, and do not result in recovery of full function. To overcome this grand challenge, much research has been dedicated to the development of engineered three- dimensional (3D) bone tissue, which typically is composed of a biomaterial containing human mesenchymal stem cells (hMSCs) for bone formation and endothelial cells for blood vessel formation. Although these approaches accelerate implant anastomosis, it is inherently still associated with a prevascular phase that causes significant amounts of starvation induced cell death. Here, we propose an innovative solution to solve this important problem. We aim to achieve this by developing an oxygen generating biomaterial that can be used to 3D bioprint a vascularized bone implant for critical bone defect treatments. To this end, we set-out to explore two of our recently developed technologies: oxygen generating biomaterials and embedded sacrificial 3D bioprinting. To maintain cell survival during the implant’s pre-anastomosis phase, we will develop hydrophobic micromaterials containing molecules that release oxygen upon hydrolysis, which can be controlled via tuning the micromaterial’s hydrophobicity. These microparticles will be combined with our 3D printable and bone forming nanoparticle incorporated biomaterial matrix (Silicate-nanoparticles/GelMA) that is laden with human mesenchymal stem cells to effectively create an oxygenating bone forming bioink. This bioink will be used as a viscous medium in which a 3D vascular structure will be printed using embedded bioprinting; a novel 3D bioprinting technique that we are pioneering. Specifically, we will endow constructs with a 3D vascular structure of endothelial cell laden alginate bioink. Crosslinking the oxygenating bioink using low levels of UV light will yield a fully solid 3D construct. Upon sacrificing the internal alginate structure, an open 3D vascular network will be instantly formed. The pre-laden endothelial cells will coat the 3D network and thus provide a functional early vascularity that will accelerate anastomosis and thus minimize the implant’s prevascular phase. After in depth in vitro characterization using normoxic and hypoxic cultures, we will investigate the construct’s in vivo behavior using a subcutaneous and a critical defect model.
摘要

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ferritin Nanocage Conjugated Hybrid Hydrogel for Tissue Engineering and Drug Delivery Applications.
  • DOI:
    10.1021/acsbiomaterials.9b01482
  • 发表时间:
    2020-01-13
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Samanipour R;Wang T;Werb M;Hassannezhad H;Rangel JML;Hoorfar M;Hasan A;Lee CK;Shin SR
  • 通讯作者:
    Shin SR
Oxygen-Releasing Biomaterials: Current Challenges and Future Applications.
  • DOI:
    10.1016/j.tibtech.2021.01.007
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    17.3
  • 作者:
    Willemen, Niels G. A.;Hassan, Shabir;Gurian, Melvin;Li, Jinghang;Allijn, Iris E.;Shin, Su Ryon;Leijten, Jeroen
  • 通讯作者:
    Leijten, Jeroen
Flexible and Stretchable PEDOT-Embedded Hybrid Substrates for Bioengineering and Sensory Applications.
Enzyme-Mediated Alleviation of Peroxide Toxicity in Self-Oxygenating Biomaterials.
酶介导减轻自氧化生物材料中的过氧化物毒性。
  • DOI:
    10.1002/adhm.202102697
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Willemen,NielsGA;Hassan,Shabir;Gurian,Melvin;Jasso-Salazar,MariaFernanda;Fan,Kai;Wang,Haihang;Becker,Malin;Allijn,IrisE;Bal-Öztürk,Ayça;Leijten,Jeroen;Shin,SuRyon
  • 通讯作者:
    Shin,SuRyon
Self-oxygenation of engineered living tissues orchestrates osteogenic commitment of mesenchymal stem cells.
  • DOI:
    10.1016/j.biomaterials.2023.122179
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Shabir Hassan;Ting Wang;Kun Shi;Yike Huang;Mariely Urbina;Kaifeng Gan;Mo Chen;Niels G A Willemen;Haroon Kalam;E. Luna-Ceron;Berivan Çeçen;Gihan Daw Elbait;Jinghang Li;Luis Enrique García-Rivera;Melvin Gurian;Mudassir Meraj Banday;Kisuk Yang;M. C. Lee;Weida Zhuang;Castro Johnbosco;Oju Jeon;E. Alsberg;J. Leijten;S. Shin
  • 通讯作者:
    Shabir Hassan;Ting Wang;Kun Shi;Yike Huang;Mariely Urbina;Kaifeng Gan;Mo Chen;Niels G A Willemen;Haroon Kalam;E. Luna-Ceron;Berivan Çeçen;Gihan Daw Elbait;Jinghang Li;Luis Enrique García-Rivera;Melvin Gurian;Mudassir Meraj Banday;Kisuk Yang;M. C. Lee;Weida Zhuang;Castro Johnbosco;Oju Jeon;E. Alsberg;J. Leijten;S. Shin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Su Ryon Shin其他文献

Su Ryon Shin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Su Ryon Shin', 18)}}的其他基金

Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
  • 批准号:
    10576353
  • 财政年份:
    2021
  • 资助金额:
    $ 37.87万
  • 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
  • 批准号:
    10353393
  • 财政年份:
    2021
  • 资助金额:
    $ 37.87万
  • 项目类别:
Programmable multimaterial bioprinting of 3D vascularized tissue constructs
3D 血管化组织结构的可编程多材料生物打印
  • 批准号:
    9788446
  • 财政年份:
    2018
  • 资助金额:
    $ 37.87万
  • 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
  • 批准号:
    10212963
  • 财政年份:
    2018
  • 资助金额:
    $ 37.87万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.87万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了