Programmable multimaterial bioprinting of 3D vascularized tissue constructs
3D 血管化组织结构的可编程多材料生物打印
基本信息
- 批准号:9788446
- 负责人:
- 金额:$ 21.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAmericanArchitectureAreaAutomobile DrivingBiocompatible MaterialsBiologicalBlood VesselsCell Differentiation processCell MaturationCell SurvivalCellsCharacteristicsChemicalsComplexCuesDependenceDepositionDevelopmentDiffusionDimensionsDiseaseElasticityEndothelial CellsEngineeringEnvironmentExhibitsExtracellular MatrixGelatinHumanHydrogelsIn VitroMechanicsMicrofabricationMicrofluidic MicrochipsMicrofluidicsModelingMuscleMuscle FibersMyoblastsNatural regenerationNutrientOperative Surgical ProceduresOrganOrgan failureOxygenPatientsPatternPolymersPositioning AttributePrintingProblem SolvingProcessPropertyPrunella vulgarisReagentRecombinantsRegenerative MedicineRiskSignal TransductionSkeletal MuscleStructureSystemTechnologyTimeTissue EngineeringTissue TransplantationTissuesTransplanted tissueTraumaTraumatic injuryTropoelastinUrsidae FamilyWritingangiogenesisbasebioprintingblood perfusioncell typeclinically relevantcosthealingimprovedin vivoinjuredmechanical propertiesnew technologynovelphysical propertyprogramstechnology developmentthree dimensional structuretumor ablation
项目摘要
Project Summary
In vitro development of highly organized and vascularized three-dimensional (3D) tissue constructs is of great
importance in tissue engineering, since native muscle tissues exhibit highly organized 3D complex
architectures composed of an extracellular matrix (ECM), different cell types, and chemical and physical
signaling cues. Bioprinting has emerged as a new technology to develop highly complex, 3D structures;
however, there are many remaining challenges, such as the necessity for precise positioning/switching of
different cell-types and materials to create multi-cellular 3D structures with various sizes, and creating patterns
that resemble the physical properties of in vivo environments. To address these challenges, we plan to develop
an embedded multi-material bioprinting (EMB) technology that employs a self-healing supporting hydrogel and
a programmable microfluidic device. The multi-material bioprinting (MB) system can be developed by
integration of a direct-write 3D bioprinting system with a high precision, programmable microfluidic printhead,
which can easily and quickly switch between different materials, reagents and cells. The multi-axial extrusion
systems are able to create multi-scale microfibers for muscle bundles and perfusable blood vessel networks to
mimic the mechanical properties and architecture of their spatially organized natural counterparts. While it is
difficult to precisely control the materials’ position in Z directions to create freestanding hydrogel architectures,
we will improve the high print fidelity of the MB system by combining an embedded 3D bioprinting technology
by using a self-healing supporting hydrogel. In addition, the supporting hydrogel will be able to achieve fast
deposition of the desired pre-polymer solution in X-Y-Z directions without additional gelation processing. By
combining this embedded printing strategy with the microfluidic device incorporated MB technology, it will allow
us to print multi-component/multi-cellular tissue constructs with biologically relevant architectures and
characteristics that are difficult or impossible to bioprint at present. Furthermore, the use of a cell-laden bioink,
which mimics the mechanical and biological properties of muscle tissue, can act as a platform to promote
differentiation and maturation of muscle precursors, as well as improved contractile activity. It is envisioned
that the successful development of this project will have a significant impact on the ability to heal muscle
trauma as well as to advance the field of muscle tissue engineering. Furthermore, this process can be readily
applied to other areas of regenerative medicine to generate new organs.
项目摘要
高度组织化和血管化的三维(3D)组织构建体的体外开发具有重要意义。
组织工程的重要性,因为天然肌肉组织表现出高度组织化的3D复合体,
由细胞外基质(ECM)、不同细胞类型以及化学和物理性质组成的结构
信号提示生物打印已经成为开发高度复杂的3D结构的新技术;
然而,仍然存在许多挑战,例如需要精确定位/切换
不同的细胞类型和材料,以创建具有各种尺寸的多细胞3D结构,并创建图案
类似于体内环境的物理特性。为了应对这些挑战,我们计划开发
- 嵌入式多材料生物打印(EMB)技术,其采用自修复支持水凝胶,
可编程微流体装置。多材料生物打印(MB)系统可以通过以下方式开发:
直接写入3D生物打印系统与高精度可编程微流体打印头的集成,
其可以容易且快速地在不同的材料、试剂和细胞之间切换。多轴挤压
系统能够产生用于肌肉束和可灌注血管网络的多尺度微纤维,
模仿其空间组织的自然对应物的机械性能和结构。虽然
难以精确控制材料在Z方向上的位置以产生独立的水凝胶结构,
我们将通过结合嵌入式3D生物打印技术,
通过使用自我修复的支撑水凝胶。此外,支持水凝胶将能够实现快速
在X-Y-Z方向上沉积所需的预聚物溶液,而无需额外的凝胶化处理。通过
将这种嵌入式打印策略与包含MB技术的微流体装置相结合,
我们打印具有生物相关架构的多组分/多细胞组织构建体,
这些特征目前很难或不可能生物打印。此外,使用载有细胞的生物墨水,
模拟肌肉组织的机械和生物特性,可以作为一个平台,
肌肉前体的分化和成熟,以及改善的收缩活性。可以设想
该项目的成功开发将对肌肉愈合能力产生重大影响,
创伤以及推进肌肉组织工程领域。此外,该方法可以容易地
应用于再生医学的其他领域,以产生新的器官。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su Ryon Shin其他文献
Su Ryon Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su Ryon Shin', 18)}}的其他基金
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10576353 - 财政年份:2021
- 资助金额:
$ 21.98万 - 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10353393 - 财政年份:2021
- 资助金额:
$ 21.98万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10425405 - 财政年份:2018
- 资助金额:
$ 21.98万 - 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
- 批准号:
10212963 - 财政年份:2018
- 资助金额:
$ 21.98万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 21.98万 - 项目类别:
Research Grant