Oxygen generating bioinks for 3D printed bone implants

用于 3D 打印骨植入物的产氧生物墨水

基本信息

  • 批准号:
    10212963
  • 负责人:
  • 金额:
    $ 39.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-17 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Abstract Musculoskeletal tissue injuries are a leading cause of disability in the United States (US), yet there are only a few viable options for patients suffering from bone degeneration. One of the major challenges in this field is nonunion formation, which is the permanent failure of bone fracture healing. Current therapies such as bone fixation or bone grafting are often ineffective, painful, invasive, costly, and do not result in recovery of full function. To overcome this grand challenge, much research has been dedicated to the development of engineered three- dimensional (3D) bone tissue, which typically is composed of a biomaterial containing human mesenchymal stem cells (hMSCs) for bone formation and endothelial cells for blood vessel formation. Although these approaches accelerate implant anastomosis, it is inherently still associated with a prevascular phase that causes significant amounts of starvation induced cell death. Here, we propose an innovative solution to solve this important problem. We aim to achieve this by developing an oxygen generating biomaterial that can be used to 3D bioprint a vascularized bone implant for critical bone defect treatments. To this end, we set-out to explore two of our recently developed technologies: oxygen generating biomaterials and embedded sacrificial 3D bioprinting. To maintain cell survival during the implant’s pre-anastomosis phase, we will develop hydrophobic micromaterials containing molecules that release oxygen upon hydrolysis, which can be controlled via tuning the micromaterial’s hydrophobicity. These microparticles will be combined with our 3D printable and bone forming nanoparticle incorporated biomaterial matrix (Silicate-nanoparticles/GelMA) that is laden with human mesenchymal stem cells to effectively create an oxygenating bone forming bioink. This bioink will be used as a viscous medium in which a 3D vascular structure will be printed using embedded bioprinting; a novel 3D bioprinting technique that we are pioneering. Specifically, we will endow constructs with a 3D vascular structure of endothelial cell laden alginate bioink. Crosslinking the oxygenating bioink using low levels of UV light will yield a fully solid 3D construct. Upon sacrificing the internal alginate structure, an open 3D vascular network will be instantly formed. The pre-laden endothelial cells will coat the 3D network and thus provide a functional early vascularity that will accelerate anastomosis and thus minimize the implant’s prevascular phase. After in depth in vitro characterization using normoxic and hypoxic cultures, we will investigate the construct’s in vivo behavior using a subcutaneous and a critical defect model.
摘要 肌肉骨骼组织损伤是美国残疾的主要原因,然而, 对于患有骨退化的患者来说,只有少数可行的选择。之一 该领域的主要挑战是骨不连的形成,这是骨的永久性失效 骨折愈合目前的治疗如骨固定或骨移植通常是无效的, 疼痛的、侵入性的、昂贵的,并且不会导致完全功能的恢复。为了克服这个巨大的 挑战,许多研究一直致力于开发工程三- 三维(3D)骨组织,其通常由包含人骨的生物材料组成。 间充质干细胞(hMSCs)用于骨形成和血管内皮细胞 阵尽管这些方法加速了植入物吻合,但其本质上仍然是 与血管前阶段相关,导致大量饥饿诱导的细胞 死亡在这里,我们提出了一个创新的解决方案来解决这个重要的问题。我们的目标是 通过开发可用于3D生物打印的氧气生成生物材料来实现这一目标。 血管化骨植入物用于严重骨缺损治疗。为此,我们开始探索 我们最近开发的两项技术:氧气生成生物材料和嵌入式 牺牲3D生物打印为了在植入物的吻合前阶段维持细胞存活, 我们将开发疏水微材料,其中含有释放氧气的分子, 水解,这可以通过调节微材料的疏水性来控制。这些 微粒将与我们的3D打印和骨形成纳米颗粒相结合, 掺入的生物材料基质(硅酸盐纳米颗粒/GelMA),其负载有人 间充质干细胞以有效地产生充氧骨形成生物墨水。这个生物墨水 将被用作粘性介质,其中3D血管结构将使用 嵌入式生物打印;我们正在开创的一种新型3D生物打印技术。我们特别 将赋予构建体内皮细胞负载藻酸盐生物墨水的3D血管结构。 使用低水平的UV光交联氧化生物墨水将产生完全固体的3D 构建体在牺牲内部藻酸盐结构后,将形成开放的3D血管网络。 瞬间形成。预负载的内皮细胞将覆盖3D网络,从而提供一种新的内皮细胞。 功能性早期血管分布,这将加速吻合,从而最大限度地减少植入物的 血管前期在使用常氧和低氧培养物进行深入的体外表征后, 我们将使用皮下和临界缺损研究该结构的体内行为 模型

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Su Ryon Shin其他文献

Su Ryon Shin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Su Ryon Shin', 18)}}的其他基金

Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
  • 批准号:
    10576353
  • 财政年份:
    2021
  • 资助金额:
    $ 39.02万
  • 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
  • 批准号:
    10353393
  • 财政年份:
    2021
  • 资助金额:
    $ 39.02万
  • 项目类别:
Oxygen generating bioinks for 3D printed bone implants
用于 3D 打印骨植入物的产氧生物墨水
  • 批准号:
    10425405
  • 财政年份:
    2018
  • 资助金额:
    $ 39.02万
  • 项目类别:
Programmable multimaterial bioprinting of 3D vascularized tissue constructs
3D 血管化组织结构的可编程多材料生物打印
  • 批准号:
    9788446
  • 财政年份:
    2018
  • 资助金额:
    $ 39.02万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了