Synthetic biology and organelle genomics: A rubisco library as a case study in evolutionary landscapes and organellar engineering
合成生物学和细胞器基因组学:rubisco 文库作为进化景观和细胞器工程的案例研究
基本信息
- 批准号:10191932
- 负责人:
- 金额:$ 9.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-12 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBasic ScienceBiochemicalBiochemistryBiological AssayBiological ModelsBiologyCarbonCareer MobilityCase StudyChloroplastsDataEngineeringEnvironmentEnzymesEscherichia coliEvolutionFood SupplyFutureGene ExpressionGene LibraryGene MutationGenerationsGenesGenomeGenomic LibraryGenomicsGoalsGrowthHealthHumanIn VitroIndividualInstitutesKnowledgeLaboratoriesLibrariesLinkMachine LearningMapsMentorsMetabolic ControlMetabolic PathwayModelingMolecular EvolutionMolecular TargetMutateNuclearNutritionalOrganellesOutcomePhasePhotosynthesisPlant ModelPlantsPopulationProcessProtein IsoformsProteinsResearch PersonnelRibulose-Bisphosphate CarboxylaseScienceSeriesTechnologyTestingTobaccoTrainingTransgenic OrganismsTransgenic PlantsTranslatingVariantWorkcarbon fixationcareerclimate changedesignexperimental studyfood securitygenetic selectiongenetic variantgenome editinghomologous recombinationimprovedin vivoinnovationinsightknockout genemetabolic engineeringmutantmutation screeningnovelnucleaseplant growth/developmentpreferencepromotersynthetic biologytechnology developmenttranscription activator-like effector nucleases
项目摘要
Food security is a critical issue facing human health in the 21st century as the global population
approaches 10 billion and climate change threatens the food supply. Photosynthetic engineering has
been successful in improving crop yields but the central enzyme of carbon fixation, rubisco, has
remained intractable as a target of molecular evolution. The few plants tested with heterologous
rubiscos grow uniformly slower than their wild-type counterparts. The goal of this proposal is to
generate a chloroplast genome library in plants to explore the limits of rubisco function and
organellar genome organization.
In Aim 1 of this proposal I will explore the sequence-function landscape of a model, homodimeric
rubisco enzyme and a novel, linked variant I have generated. I have generated a deep-mutational
scan (OMS: all possible point-mutants) library and will assay their function in a uniquely suited
rubisco-dependent E. coli strain. I have shown that these linked rubiscos function in vivo and in
vitro and have already constructed the mutant library; in the K99 phase of this project I will
perform selections on this library and analyze the data with a machine learning model. In the R00
phase I will generate further libraries to explore regions of the sequence landscape predicted to
be rich in improved rubiscos with the goal of testing them in plants.
In Aim 2 I will improve chloroplast transformation technology in order to enable the generation of
chloroplast genome libraries of unprecedented size in the chloroplast-editing model plant N.
tabacum. To do this I will generate sequence-specific TALEN nucleases that will be expressed from
the nuclear genome and trafficked to the chloroplast where they will cut and disrupt the genome,
preferencing homologous recombination of transgenic donor ONA. After demonstrating TALEN-cutting in
the K99 phase I will develop this technology into an intracellular gene drive which will accelerate
chloroplast genome editing.
In Aim 3, with the technology developed in Aim 2 and the rubisco variants discovered in Aim 1, I
will generate libraries of plants with altered rubisco genes and promoters in order to demonstrate
the potential of rubisco engineering to improve plant growth. In addition, in the R00 phase, I will
produce a comprehensive chloroplast gene knockout library in order to answer fundamental questions
about the evolutionary flow of genes from organellar genomes to nuclear genomes.
My goal as an independent investigator is to study organellar biology in model plants in order to
explore the limits of engineering in individual proteins and metabolic pathways. My training in
organellar transformation, protein library generation and laboratory management during the K99
phase will prepare me well for the R00 phase. The Innovative Genomics Institute at UC Berkeley and
the laboratories of Ors. Oavid Savage and Brian Staskawicz in particular are the ideal environment
for my career transition, combining precisely the necessary mixture of expertise - protein
evolution and plant transformation, respectively.
粮食安全是21世纪全球人口健康面临的一个关键问题
接近100亿,气候变化威胁着粮食供应。光合作用工程
在提高作物产量方面取得了成功,但碳固定的核心酶rubisco,
作为分子进化的目标仍然难以解决。用异源植物测试的少数植物
Rubiscos比它们的野生型对应物均匀地生长得慢。本提案的目的是
在植物中产生叶绿体基因组文库以探索Rubisco功能的限制,
细胞器基因组组织
在本提案的目标1中,我将探索同源二聚体模型的序列-功能景观,
rubisco酶和一个新的,连接的变体我已经产生。我生成了一个深度变异的
扫描(OMS:所有可能的点突变体)文库,并将在一个独特适合的
依赖Rubisco的E.大肠杆菌菌株。我已经证明,这些连接的Rubiscos在体内和体内发挥作用,
体外,并已经构建了突变体库;在这个项目的K99阶段,
在此库上执行选择并使用机器学习模型分析数据。在R 00
第一阶段将产生更多的文库,以探索预测的序列景观区域,
富含改良的rubiscos,目的是在植物中测试它们。
在目标2中,我将改进叶绿体转化技术,以便能够产生
在叶绿体编辑模式植物N.
烟草为了做到这一点,我将产生序列特异性TALEN核酸酶,其将从
核基因组并运输到叶绿体,在那里它们将切割和破坏基因组,
优选转基因供体ONA的同源重组。在演示了TALEN切割后,
K99第一阶段将把这项技术发展成一种细胞内基因驱动器,
叶绿体基因组编辑
在目标3中,利用目标2中开发的技术和目标1中发现的rubisco变体,
将产生具有改变的rubisco基因和启动子的植物文库,
rubisco工程改造提高植物生长的潜力。此外,在R 00阶段,我将
建立一个全面的叶绿体基因敲除文库,以回答基本问题
关于基因从细胞器基因组到核基因组的进化流。
作为一名独立研究者,我的目标是研究模式植物的细胞器生物学,
探索个别蛋白质和代谢途径的工程限制。我的训练
K99期间的细胞器转化、蛋白质文库生成和实验室管理
阶段将为R 00阶段做好准备。加州大学伯克利分校的创新基因组学研究所,
奥斯的实验室特别是奥维德·萨维奇和布莱恩·斯塔斯卡维奇,
为了我的职业转型,将蛋白质和蛋白质的必要混合物
进化和植物转化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noam Prywes其他文献
Noam Prywes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noam Prywes', 18)}}的其他基金
Synthetic biology and organelle genomics: A rubisco library as a case study in evolutionary landscapes and organellar engineering
合成生物学和细胞器基因组学:rubisco 文库作为进化景观和细胞器工程的案例研究
- 批准号:
10441273 - 财政年份:2021
- 资助金额:
$ 9.39万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 9.39万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 9.39万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 9.39万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 9.39万 - 项目类别:
Australian Laureate Fellowships
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 9.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 9.39万 - 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 9.39万 - 项目类别: