Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
基本信息
- 批准号:10204507
- 负责人:
- 金额:$ 58.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAcousticsAgeAirAlgorithmsAngiographyAnisotropyAreaBackBenchmarkingBiomechanicsBody mass indexBreastCicatrixClinicClinicalClinical ProtocolsCollagenCorneaCosmeticsCoupledDataDermatologyDonor personElasticityEnsureEnvironmentEstheticsFaceFeedbackForearmFutureGenderGoalsHumanImageImaging DeviceInflammationMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMedicalMethodsModelingModulusMonitorNeckOperative Surgical ProceduresOpticsOrgan TransplantationOutcomePatientsPersonsPhasePlastic Surgical ProceduresPopulationPostoperative ProceduresProceduresProcessPropertyProtocols documentationRadiationRadiology SpecialtyReconstructive Surgical ProceduresRecoveryResolutionRobotRoboticsSamplingSiteSkinSkin graftStructureSubcutaneous TissueSurgical OncologySystemTechniquesTestingTherapeuticThickTimeTissue DonorsTissue GraftsTissuesTransplantationUltrasonographybasebiomechanical modelclinical applicationclinical efficacyclinical translationelastographyexperimental studyfootgraft healinghealinghealthy volunteerhuman subjectin vivoin vivo imaging systemin vivo monitoringinnovationinstrumentreconstructiontool
项目摘要
Abstract
The goal of this project is a develop a non-contact, non-invasive clinical tool to characterize, image and
monitor skin grafting procedures using quantitative, volumetric, sub-mm resolved maps of Young's
modulus based on Optical Coherence Elastography (OCE).
Factors related to or directly defined by skin's elastic properties (such as contractions and shearing forces) are
among the most common complications of full thickness skin graft (FTSG) procedures. In addition, the recipient
site functions best when its elastic properties are matched by transplanted donor tissue. With tens of millions
of aesthetic procedures performed every year in the USA alone, surgical cosmesis is clearly critical, especially
when procedures are performed on the face, neck or breast. Currently there are no clinical tools, or even
methods, that can quantitatively map skin's Young's modulus and anisotropy in vivo. We propose to map these
parameters in skin using a non-contact, fully non-invasive method, with sub-mm spatial resolution and
nearly in real time. We hypothesize that quantifying skin elasticity in vivo will enable significant innovation within
all areas of plastic surgery, burn surgery, oncologic surgery, and dermatology that modify a patient's tissue
quality and elastic properties through medical, radiologic, or surgical intervention.
To achieve our objective, we propose a new non-contact OCE method. Our approach is based on: (i) acoustic
micro-tapping (AµT) using ultrasound propagating in air to launch mechanical waves in soft media with the
highest efficiency and best resolution among all non-contact wave-excitation methods, (ii) state-of-the-art real-
time 4-D PhS-OCT imaging to track wave propagation, and (iii) reconstruction of volumetric maps of Young's
modulus and anisotropy using imaged wavefields in skin analyzed with a transversally isotropic model.
SA1 will focus on refining previously developed analytic and numerical models of mechanical wave
propagation in skin considering its layered anisotropic structure, and developing algorithms to reconstruct
skin's moduli. Then, SA2 will develop a robotized AµT-OCE imaging system for in vivo skin measurements in
a clinical environment. We will perform routine measurements of skin elastic moduli in vivo on healthy
volunteers to understand normal variability in skin elastic properties in a representative population of normal
human subjects to help define the level of expected improvements possible in matching skin elastic properties
in FTSG procedures. SA3 will focus on in vivo monitoring changes in grafted skin elastic properties during
grafting procedures in the clinic, including pre-operative mapping of skin's elastic properties in donor and
recipient sites and mapping longitudinal changes in fundamental structural and elastic parameters of FTSGs
and surrounding tissue over the reconstruction process. If successful, this project can be the starting point for
multiple continuation projects testing whether new methods and clinical protocols can be developed using
information from OCE to help select the best donor tissue for grafting and guide post-surgery procedures.
摘要
该项目目标是开发一种非接触式、非侵入性的临床工具来表征、成像和
使用定量的、体积的、亚毫米分辨率的Young‘s图监测植皮手术
基于光学相干弹性成像(OCE)的模数。
与皮肤弹性特性(如收缩和剪切力)相关或直接由其定义的因素有
全厚皮肤移植(FTSG)手术最常见的并发症之一。此外,收件人
当移植的供体组织与其弹性特性相匹配时,网站的功能最好。几千万美元
在仅在美国每年进行的美容手术中,外科美容显然是至关重要的,尤其是
在面部、颈部或乳房进行手术时。目前还没有临床工具,甚至没有
方法,可以在活体内定量绘制皮肤的杨氏模数和各向异性。我们建议绘制这些地图
皮肤参数使用非接触式、完全非侵入性方法,具有亚毫米空间分辨率和
几乎是实时的。我们假设,在活体内量化皮肤弹性将使
整形外科、烧伤外科、肿瘤外科和皮肤科的所有领域,都可以改变病人的组织
通过内科、放射科或外科手术获得的质量和弹性。
为了达到我们的目标,我们提出了一种新的非接触式OCE方法。我们的方法基于:(I)声学
利用超声波在空气中传播,在软介质中发射机械波的微攻丝(A?T)
最高的效率和最好的分辨率在所有非接触式激发波方法中,(Ii)最先进的实时
时间四维PHS-OCT成像跟踪波的传播和(Iii)重建杨氏体积图
用横向各向同性模型分析皮肤中成像波场的模数和各向异性。
SA1将专注于完善以前开发的机械波的解析和数值模型
考虑其层状各向异性结构在皮肤中的传播,并开发重建算法
皮肤的模数。然后,SA2将开发一种机器人A?T-OCE成像系统,用于活体皮肤测量
一个临床环境。我们将对健康受试者进行活体皮肤弹性模数的常规测量
志愿者了解具有代表性的正常人群皮肤弹性性质的正常变异性
帮助确定在匹配皮肤弹性特性方面可能的预期改进水平的人体受试者
在FTSG程序中。SA3将专注于体内监测移植皮肤弹性性质的变化
临床上的移植手术,包括术前对供者和
FTSGs基本结构参数和弹性参数的受主部位及其纵向变化
以及周围组织在重建过程中的作用。如果成功,这个项目可以成为
多个延续项目,测试新方法和临床方案是否可以通过
来自OCE的信息,以帮助选择最佳的供体组织进行移植并指导手术后的程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IVAN PELIVANOV其他文献
IVAN PELIVANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IVAN PELIVANOV', 18)}}的其他基金
Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
- 批准号:
10613941 - 财政年份:2021
- 资助金额:
$ 58.68万 - 项目类别:
Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
- 批准号:
10374914 - 财政年份:2021
- 资助金额:
$ 58.68万 - 项目类别:
相似海外基金
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 58.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 58.68万 - 项目类别:
Training Grant
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 58.68万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 58.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 58.68万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 58.68万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 58.68万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 58.68万 - 项目类别:
Major Research Instrumentation
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 58.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 58.68万 - 项目类别:
Discovery Grants Program - Individual