Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
基本信息
- 批准号:10374914
- 负责人:
- 金额:$ 55.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAcousticsAgeAirAlgorithmsAngiographyAnisotropyAreaBackBenchmarkingBiomechanicsBody mass indexBreastCicatrixClinicClinicalClinical ProtocolsCollagenCorneaCosmeticsCoupledDataDermatologyDonor personElasticityEnsureEnvironmentEstheticsFaceFeedbackForearmFutureGenderGoalsHumanImageImaging DeviceInflammationMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMedicalMethodsModelingModulusMonitorNeckOperative Surgical ProceduresOpticsOrgan TransplantationOutcomePatientsPersonsPhasePlastic Surgical ProceduresPopulationPostoperative ProceduresProceduresProcessPropertyProtocols documentationRadiationRadiology SpecialtyReconstructive Surgical ProceduresRecoveryResolutionRobotRoboticsSamplingSiteSkinSkin graftStructureSubcutaneous TissueSurgical OncologySystemTechniquesTestingTherapeuticThickTimeTissue DonorsTissue GraftsTissuesTransplantationbasebiomechanical modelclinical applicationclinical efficacyclinical translationelastographyexperimental studyfootgraft healinghealinghealthy volunteerhuman subjectin vivoin vivo imaging systemin vivo monitoringinnovationinstrumentreconstructiontoolultrasound
项目摘要
Abstract
The goal of this project is a develop a non-contact, non-invasive clinical tool to characterize, image and
monitor skin grafting procedures using quantitative, volumetric, sub-mm resolved maps of Young's
modulus based on Optical Coherence Elastography (OCE).
Factors related to or directly defined by skin's elastic properties (such as contractions and shearing forces) are
among the most common complications of full thickness skin graft (FTSG) procedures. In addition, the recipient
site functions best when its elastic properties are matched by transplanted donor tissue. With tens of millions
of aesthetic procedures performed every year in the USA alone, surgical cosmesis is clearly critical, especially
when procedures are performed on the face, neck or breast. Currently there are no clinical tools, or even
methods, that can quantitatively map skin's Young's modulus and anisotropy in vivo. We propose to map these
parameters in skin using a non-contact, fully non-invasive method, with sub-mm spatial resolution and
nearly in real time. We hypothesize that quantifying skin elasticity in vivo will enable significant innovation within
all areas of plastic surgery, burn surgery, oncologic surgery, and dermatology that modify a patient's tissue
quality and elastic properties through medical, radiologic, or surgical intervention.
To achieve our objective, we propose a new non-contact OCE method. Our approach is based on: (i) acoustic
micro-tapping (AµT) using ultrasound propagating in air to launch mechanical waves in soft media with the
highest efficiency and best resolution among all non-contact wave-excitation methods, (ii) state-of-the-art real-
time 4-D PhS-OCT imaging to track wave propagation, and (iii) reconstruction of volumetric maps of Young's
modulus and anisotropy using imaged wavefields in skin analyzed with a transversally isotropic model.
SA1 will focus on refining previously developed analytic and numerical models of mechanical wave
propagation in skin considering its layered anisotropic structure, and developing algorithms to reconstruct
skin's moduli. Then, SA2 will develop a robotized AµT-OCE imaging system for in vivo skin measurements in
a clinical environment. We will perform routine measurements of skin elastic moduli in vivo on healthy
volunteers to understand normal variability in skin elastic properties in a representative population of normal
human subjects to help define the level of expected improvements possible in matching skin elastic properties
in FTSG procedures. SA3 will focus on in vivo monitoring changes in grafted skin elastic properties during
grafting procedures in the clinic, including pre-operative mapping of skin's elastic properties in donor and
recipient sites and mapping longitudinal changes in fundamental structural and elastic parameters of FTSGs
and surrounding tissue over the reconstruction process. If successful, this project can be the starting point for
multiple continuation projects testing whether new methods and clinical protocols can be developed using
information from OCE to help select the best donor tissue for grafting and guide post-surgery procedures.
摘要
该项目的目标是开发一种非接触,非侵入性的临床工具,以表征,成像和
使用定量、体积、亚毫米分辨率的杨氏图谱监测皮肤移植手术
基于光学相干弹性成像(OCE)的模量。
与皮肤弹性有关或直接由皮肤弹性定义的因素(如收缩力和剪切力)是
全层皮肤移植(FTSG)手术最常见的并发症之一。此外,收件人
当其弹性与移植的供体组织相匹配时,部位功能最佳。拥有数千万
仅在美国每年进行的美容手术中,外科美容显然是至关重要的,特别是
当在面部、颈部或乳房上进行手术时。目前还没有临床工具,甚至
方法,可以定量映射皮肤的杨氏模量和各向异性在体内。我们建议绘制这些
使用非接触、完全非侵入性的方法,以亚毫米的空间分辨率测量皮肤中的参数,
几乎是真实的时间。我们假设,量化皮肤弹性在体内将使显着的创新,
整形外科、烧伤外科、肿瘤外科和皮肤科的所有领域都可以改变患者的组织
通过医疗、放射或手术干预,获得高质量和弹性的产品。
为了实现我们的目标,我们提出了一种新的非接触OCE方法。我们的方法是基于:(一)声学
微敲击(AµT),使用在空气中传播的超声波在软介质中发射机械波,
最高的效率和最好的分辨率在所有非接触波激发方法,(ii)国家的最先进的真实的-
时间4-D PhS-OCT成像以跟踪波传播,以及(iii)杨氏体积图的重建
模量和各向异性使用成像的波场在皮肤分析与横向各向同性模型。
SA 1将专注于完善以前开发的机械波分析和数值模型
传播在皮肤考虑其分层各向异性结构,并开发算法来重建
皮肤模量然后,SA 2将开发一种机器人AµT-OCE成像系统,用于体内皮肤测量,
临床环境。我们将进行常规测量皮肤弹性模量在体内健康
志愿者了解皮肤弹性特性的正常变化,在正常的代表性人口
以帮助定义在匹配皮肤弹性特性中可能的预期改善水平
在FTSG程序中。SA 3将重点关注在移植过程中移植皮肤弹性特性的体内监测变化。
临床移植程序,包括术前绘制供体皮肤的弹性特性,
FTSG的基本结构和弹性参数的受体位点和映射纵向变化
和周围组织的影响如果成功,这个项目可以成为
多个连续项目测试是否可以使用
OCE的信息,以帮助选择最佳的供体组织移植和指导手术后的程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IVAN PELIVANOV其他文献
IVAN PELIVANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IVAN PELIVANOV', 18)}}的其他基金
Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
- 批准号:
10613941 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
- 批准号:
10204507 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
相似海外基金
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 55.92万 - 项目类别:
Training Grant
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 55.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 55.92万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 55.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 55.92万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 55.92万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
Major Research Instrumentation
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 55.92万 - 项目类别:
Discovery Grants Program - Individual
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 55.92万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)