Mapping genetic variation in enzyme velocity to growth rate phenotype
将酶速度的遗传变异映射到生长速率表型
基本信息
- 批准号:10371892
- 负责人:
- 金额:$ 32.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-20 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AntibioticsBacteriaBiochemical PathwayBiological ModelsBiologyBreathingCRISPR interferenceChromosome MappingComplexDHFR geneDNA Sequence AlterationDataData SetDependenceDihydrofolate ReductaseDiseaseDisease ProgressionDoseEngineeringEnvironmentEnvironmental Risk FactorEnzymesEscherichia coliEvolutionFolic AcidGene CombinationsGenesGeneticGenetic EpistasisGenetic VariationGenomeGenotypeGoalsGrantGrowthHealthHeightHumanHuman GeneticsIndividualKnock-outKnowledgeLaboratoriesLibrariesLinkMapsMathematicsMeasurementMeasuresMediatingMetabolicMetabolic PathwayMetabolismMethodologyModelingMutagenesisMutationNutrientOrganismPathway interactionsPatientsPerformancePeriodicityPharmaceutical PreparationsPharmacologyPhenotypePlayReactionResistanceRoleSamplingScanningTYMS geneTechniquesTestingTheoretical StudiesThymidylate SynthaseTimeTrainingTranslatingTrimethoprimVariantWorkbehavioral phenotypingcancer therapycell behaviorcell growthcell typecombinatorialdesigndisease-causing mutationenvironmental interventionenzyme activityenzyme pathwayexperimental studyfolic acid metabolismgene environment interactiongene therapyinsightknock-downmathematical modelmetabolic engineeringmutantnext generation sequencingpersonalized medicinepredictive modelingresponsetrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Over the last thirty years, our capacity to collect genome sequence information has rapidly outpaced our ability
to analyze and interpret it. Despite significant efforts to quantitatively relate genotype to phenotype, we struggle
to predict classic Mendelian traits like height from human genetic data. In apparently simpler organisms, such
as bacteria, we are often unable to predict the effects of even single mutations on growth rate. Indeed,
extending our current knowledge of genotype to the understanding, prediction, and control of global cellular
behaviors (phenotype) remains a central goal of biology. This problem is made complex by three factors: 1) the
mapping between a single gene’s activity and phenotype is non-linear and generally unknown, 2) the mapping
is shaped by epistatic interactions between genes, and 3) the mapping is influenced by environmental factors.
Given knowledge of the parameters governing these three relationships, we then need a strategy to combine
these data into a quantitative model of phenotype. The goal of this grant is to develop exactly such a strategy,
by focusing on an experimentally powerful and well defined instantiation of the genotype to phenotype
problem: how variation in metabolic enzyme activity influences the growth rate of a unicellular organism (E.
coli). We propose a modeling approach in which epistatic relationships between genes and the environment
can all be measured and modeled as continuous, dose-dependent phenomena. To parameterize and test this
model, we will collect over 100,000 growth rate measurements sampling genetic and environmental variation in
folate metabolism, a well-conserved pathway with important roles in human health and disease. These data
will be generated using new methodology developed by my laboratory that combines CRISPR interference
(CRISPRi), next generation sequencing, and continuous culture to quantitatively measure growth rates for
thousands of mutants in parallel under prescribed environmental variation. A small subset of the growth rate
data will be used to mathematically constrain our model (~10-20%), and we will evaluate model performance
on the remainder. We will also assess the capacity of the model to predict growth rates for higher order
combinations of enzyme activity and environmental perturbations not included in the original data set. At
completion, we will have established and tested a complete genotype-phenotype mapping relating changes in
folate pathway enzyme activities to growth rate. This final model will be of immediate relevance for
understanding how variation in folate metabolic enzymes interacts with environmental conditions to influence
resistance to common antibiotics (e.g. trimethoprim). More generally, the modeling framework can be
translated to map genotype-to-phenotype relationships in other biochemical pathways and cell types. This
approach will provide a new strategy for the engineering of biosynthetic pathways, designing personalized
therapies, and inferring the growth rate effects of mutations in higher organisms.
项目总结/摘要
在过去的三十年里,我们收集基因组序列信息的能力迅速超过了我们的能力。
分析和解释它。尽管在定量地将基因型与表型联系起来方面做了大量的努力,
从人类基因数据中预测典型的孟德尔特征,比如身高。在明显更简单的生物体中,
作为细菌,我们往往无法预测甚至单个突变对生长速度的影响。的确,
将我们现有的基因型知识扩展到理解、预测和控制全球细胞遗传学,
行为(表型)仍然是生物学的中心目标。这个问题是复杂的三个因素:1)
单个基因的活性和表型之间的映射是非线性的并且通常是未知的,2)映射
基因间的上位性相互作用决定了基因定位的准确性; 3)基因定位受环境因素的影响。
如果知道了控制这三种关系的参数,我们就需要一种策略来联合收割机
将这些数据转化为表型的定量模型。这笔赠款的目标就是制定这样一个战略,
通过集中在实验上强大的和明确定义的基因型到表型的实例,
问题:代谢酶活性的变化如何影响单细胞生物的生长速率(E。
大肠杆菌)。我们提出了一种建模方法,其中基因和环境之间的上位关系
都可以被测量和建模为连续的,剂量依赖的现象。来测试这个
模型,我们将收集超过100,000个生长率测量样本的遗传和环境变异,
叶酸代谢是一种在人类健康和疾病中具有重要作用的保守途径。这些数据
将使用我的实验室开发的新方法产生,
(CRISPRi)、下一代测序和连续培养,以定量测量
成千上万的突变体在规定的环境变化下并行。增长率的一小部分
数据将用于数学约束我们的模型(~10-20%),我们将评估模型性能
其余的。我们还将评估模型预测高阶增长率的能力
未包括在原始数据集中的酶活性和环境扰动的组合。在
完成后,我们将建立和测试一个完整的基因型-表型映射相关的变化,
叶酸途径酶活性与生长速度的关系。这一最终模型将直接关系到
了解叶酸代谢酶的变化如何与环境条件相互作用,
对常见抗生素(如甲氧苄啶)的耐药性。更一般地,建模框架可以是
转译以绘制其他生化途径和细胞类型中基因型与表型的关系。这
这种方法将为生物合成途径的工程设计提供一种新的策略,
治疗,并推断高等生物突变的生长率效应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Ann Reynolds其他文献
Kimberly Ann Reynolds的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly Ann Reynolds', 18)}}的其他基金
Mapping genetic variation in enzyme velocity to growth rate phenotype
将酶速度的遗传变异映射到生长速率表型
- 批准号:
10594489 - 财政年份:2020
- 资助金额:
$ 32.04万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 32.04万 - 项目类别:
Continuing Grant














{{item.name}}会员




