Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
基本信息
- 批准号:10205394
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:Acute PainAfferent NeuronsAnimalsBRAIN initiativeBehaviorBehavioralBrainCalciumCationsCellsCellular biologyChronicCodeDataDetectionElectrophysiology (science)Experimental DesignsFamilyFiberFutureGoalsGrantHeadHealth SciencesImageImplantIn VitroInterneuronsInterventionInvestigationLightMedicalMedicineMethodologyMethodsMicroelectrodesMicroscopeMicroscopyModelingMonitorMusNerve FibersNeuraxisNeuronsNeurosciencesNociceptionOpticsOutcomePainPain intensityParentsParvalbuminsPerceptionPeripheralPhysiciansPosterior Horn CellsProcessReflex actionReportingResearchRestScientistSensorySignal TransductionSiteSpinalSpinal CordSpinal cord posterior hornTRPV1 geneTactileTechniquesThalamic structureTimeTouch sensationTrainingTransgenic MiceUnderrepresented PopulationsUniversitiesVertebral columnVideo RecordingViralWorkafferent nerveawakebasecalmodulin-dependent protein kinase IIcareercell typechronic paindetection assaydorsal hornexcitatory neuronexperienceextracellularimprovedin vivomedical schoolsmembermillisecondneurophysiologyoptogeneticspain processingpain signalreceptorrelating to nervous systemresponseskillsspatiotemporaltransmission process
项目摘要
PROJECT SUMMARY
Understanding the cellular biology and neurophysiology of sensory processing in the spinal cord is
fundamental to advancing medical intervention in the treatment of chronic and acute pain conditions. The
current understanding of the neurophysiology of spinal cord circuitry is founded on experimental single-unit
electrophysiology on anesthetized animals and in-vitro studies, but limited data exist from in-vivo functional
circuitry of sensory signals. Part of the challenge to such experimentation has been the limited capacity for
monitoring electrophysiologic signals in awake animals and inducing reliable activation of pain fibers.
Consequently, the activity of specific neuronal subtypes in propagating excitatory and inhibitory signals
involved in the transmission of pain signals remains unknown in-vivo. Recently, we have developed a pain
detection assay consisting of a lick behavior in response to optogenetic activation of predominantly nociceptive
peripheral afferent nerve fibers in head-restrained transgenic mice expressing Channelrhodopsin 2 (ChR2) in
transient receptor potential cation channel subfamily V member 1 (TRPV1) containing neurons. In this model,
mice are trained to provide lick reports to the detection of light-evoked nociceptive stimulation to the hind paw.
Our nociceptive lick-report detection assay enables a host of investigations into the millisecond, single-cell,
neural dynamics underlying pain processing in the central nervous system of awake behaving animals.
Further, we have developed a “backpack drive” to provide multi-site chronic extracellular recordings from
dorsal horn neurons derived from superficial laminas II-III. Unfortunately, such electrophysiology cannot be
used to determine cellular subclasses during recording. Here, we will focus on advancing our ability to record
cell-type-specific activity in the dorsal horn in response to light-activated TRPV1 containing neurons in the
periphery. We will develop a reliable method for achieving consistent GCaMP6-family expression in specific
neuronal cell types (e.g. CaMKII, PV) involved in the specific activation of pain signals through our optogenetic
stimulation experimental design. We will optimize a spinal optical window to perform awake Calcium imaging
during time-locked tactile input and characterize calcium dynamics in neuronal subtypes in the dorsal horn
during behavioral tasks. This work will establish a methodology to collect temporal dynamics of large classes of
neurons in the dorsal horn in response to time-locked, spatially-precise, and amplitude-modulated input in the
periphery leading to improved understanding of acute pain conditions.
项目总结
了解脊髓感觉处理的细胞生物学和神经生理学
这是推进治疗慢性和急性疼痛的医疗干预的基础。这个
目前对脊髓环路神经生理学的认识是建立在实验单一单位的基础上的
麻醉动物的电生理学和体外研究,但来自体内功能的数据有限
感官信号的回路。这种实验面临的部分挑战是有限的能力
监测清醒动物的电生理信号,并诱导疼痛纤维的可靠激活。
因此,特定神经元亚型在传播兴奋性和抑制性信号时的活动
在体内,痛觉信号的传递机制尚不清楚。最近,我们出现了一种疼痛
由对主要伤害性感受器的光基因激活作出反应的舔行为组成的检测方法
表达通道视紫红质2基因小鼠的外周传入神经纤维
含有神经元的瞬时受体电位阳离子通道亚家族V成员1(TRPV1)。在这个模型中,
小鼠被训练来提供舔舔报告,以检测到光对后爪的伤害性刺激。
我们的伤害性舔报告检测方法能够对毫秒级、单细胞、
清醒行为动物中枢神经系统疼痛处理的神经动力学。
此外,我们还开发了一种“背包驱动器”来提供多个地点的慢性细胞外录音。
来自浅层板层的背角神经元II-III。不幸的是,这种电生理学不能
用于在记录过程中确定蜂窝亚类。在这里,我们将重点提高我们的记录能力
背角细胞类型特异性活动对光激活的含TRPV1神经元的反应
外围设备。我们将开发一种可靠的方法来实现GCaMP6家族在特定情况下的一致表达
神经细胞类型(如CaMKII、PV)通过我们的光发生参与痛觉信号的特定激活
刺激性实验设计。我们将优化一个脊髓光学窗口来进行清醒的钙成像
时间锁定触觉输入过程中背角神经元亚型的钙动力学特征
在行为任务中。这项工作将建立一种方法来收集大班的时间动力学
背角神经元对时间锁定、空间精确和幅度调制的输入的反应
外周刺激有助于改善对急性疼痛状况的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Allenson Borton其他文献
David Allenson Borton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Allenson Borton', 18)}}的其他基金
Bridging bench to bedside with aneurotechnology cross-development platform
通过神经技术交叉开发平台将工作台与床边桥接起来
- 批准号:
10640424 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Bioengineering a cortical microtissue model to study human microglia in Alzheimer's disease
生物工程皮质微组织模型来研究阿尔茨海默病中的人类小胶质细胞
- 批准号:
10630949 - 财政年份:2022
- 资助金额:
$ 8.96万 - 项目类别:
Bioengineering a cortical microtissue model to study human microglia in Alzheimer's disease
生物工程皮质微组织模型来研究阿尔茨海默病中的人类小胶质细胞
- 批准号:
10448954 - 财政年份:2022
- 资助金额:
$ 8.96万 - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10470025 - 财政年份:2020
- 资助金额:
$ 8.96万 - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10689290 - 财政年份:2020
- 资助金额:
$ 8.96万 - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10238761 - 财政年份:2020
- 资助金额:
$ 8.96万 - 项目类别:
Large Scale Cortical Laminar Recordings: Novel Instrumentation
大规模皮质层流记录:新颖的仪器
- 批准号:
10078368 - 财政年份:2020
- 资助金额:
$ 8.96万 - 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
- 批准号:
10305343 - 财政年份:2018
- 资助金额:
$ 8.96万 - 项目类别:
The Role of M1 Leg Area in Volitional and Stereotyped Control of the Lower Limb
M1 腿部区域在下肢意志和刻板控制中的作用
- 批准号:
10021472 - 财政年份:2018
- 资助金额:
$ 8.96万 - 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
- 批准号:
10267899 - 财政年份:2018
- 资助金额:
$ 8.96万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 8.96万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 8.96万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 8.96万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 8.96万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 8.96万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 8.96万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




