The Role of M1 Leg Area in Volitional and Stereotyped Control of the Lower Limb
M1 腿部区域在下肢意志和刻板控制中的作用
基本信息
- 批准号:10021472
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-11-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmputationAmputeesAnimalsAreaAttentionAutomobile DrivingAwardAxonBehaviorBehavioralBrainBreathingCaringClinical ResearchCustomDataData SetDevelopmentDisabled PersonsDiseaseElectric StimulationElectrocorticogramElectromyographyElectronicsFailureFollow-Up StudiesFutureGaitHome environmentHospital CostsHumanImplantIndividualIndustryIntentionJointsKnowledgeLaboratoriesLeadLegLifeLimb ProsthesisLimb structureLocationLocomotionLower ExtremityMacacaMacaca mulattaMalignant NeoplasmsMathematicsMedicalMethodsMicroelectrodesMilitary PersonnelModalityModelingMotionMotorMotor CortexMovementMuscleNervous System TraumaNeuronsNeurostimulation procedures of spinal cord tissuePalpableParaplegiaPathway interactionsPatternPerformancePeriodicityPersonsPhasePhysiologic pulsePlayPopulationPositioning AttributePrimatesProcessProsthesisPublishingQuality of lifeRehabilitation therapyReportingRoboticsRoleRotationSignal TransductionSiliconSpinalSpinal CordSpinal InjuriesSpinal cord injuryStereotypingSystemTechnologyTherapeuticTimeTrainingTranslationsTraumaUnited StatesUpper ExtremityUpper limb movementValidationVascular DiseasesVertebral columnVeteransVolitionWalkingWireless TechnologyWorkbasebrain machine interfacedata exchangedesignfeature extractionfirst-in-humanflexibilityfoothealth economicshuman studyinsightinstrumentkinematicslimb amputationlimb movementlocomotor tasksmind controlmotor controlmotor rehabilitationnervous system developmentneural implantneuroprosthesisneurotechnologynonhuman primateoperationpre-clinicalrelating to nervous systemsensorsocialspatiotemporaltooltreadmilltwo-dimensional
项目摘要
In the healthy nervous system, the development of intention and motor execution is a dynamic and highly
distributed process that originates in the brain. The intended action is transmitted along the axonal super
highway to smart circuits in the spinal cord that transform the descending command into coordinated patterns
of muscle activation. While much is understood regarding the control strategies the brain uses to drive upper
limb movements, relatively little is known about the central control of human locomotion. Further, failures of
function in one seemingly insignificant processing loop in the brain or periphery can, and often does, lead to
dramatic consequences that induce transient or permanent deficits in motor control. A particularly palpable
example of this is the consequences resulting from spinal cord injury (SCI), which, in extreme cases, can
render a person completely unable to interact with the world around them. Such nervous system injuries and
disorders have long-term health, economic and social consequences in both the civilian and Veteran
population. Despite the best available medical treatments, hundreds of thousands of individuals endure a long
life post-SCI with sensorimotor deficits that dramatically affect their quality of life.
The specific objective of this project is to build fundamental knowledge of how motor cortex (MI) controls
voluntary, as well as stereotypic, lower limb movements, and then to design both a brain-spine interface
leveraging a fully implanted hardware system, as well as a first of its kind end-point brain-machine interface for
lower limb prosthetics. We will study the basic function of nonhuman primate motor cortices during a variety of
hind limb movements, including passive walking on a treadmill, during obstacle avoidance, and direct endpoint
control on a sitting flywheel while recording high-fidelity neural population data and kinematics. Finally, our
results will be interpreted in the context of supporting a translational clinical study in humans to provide a new
rehabilitation pathway for Veterans with spinal injury, as well as neuroprosthetic pathway for amputees. We will
conclusively determine the strategies employed by nonhuman primate motor cortex to both drive and adjust
hind limb placement during locomotion and we will determine if motor cortex activity consequently changes
between so-called “automatic” movements (e.g. walking on a treadmill), and volitional, highly precise
movements (e.g. end-point control on a flywheel).
The proposed study will work with rhesus monkeys trained to walk on an instrumented treadmill, across a flat
corridor, freely within a large naturalistic roaming space, as well as controlling the pedal location along a 2-
dimensional flywheel. Animals will be implanted with a) two silicon microelectrode arrays in MI-leg, and
premotor area (PMd) containing movement planning information; b) an implantable pulse generator connected
to a custom epidural spinal cord stimulation microelectrode array; and c) electromyography sensors in key gait
muscles of the lower limb. Animals will be evaluated across all locomotor contexts, as well as in their
customized home-cage, using wireless data transmission. We will evaluate the long-term use of the BSI both
to restore functional locomotion, and to support other daily nonhuman primate activities. Finally, we will
leverage the knowledge gained about the motor cortex’s role in locomotion, as well as our previous
development of a brain-spinal interface, to deploy a fully-implanted brain-spinal interface for human translation
within the VA for application to veteran locomotor rehabilitation.
在健康的神经系统中,意图和电动执行的发展是一种动态且高度的
源自大脑的分布式过程。预期的动作沿轴突超级传输
脊髓中智能电路的高速公路,将下降命令转化为协调模式
肌肉激活。尽管大脑用来驱动上部的控制策略有很多了解
肢体运动,对人类运动的中心控制知之甚少。此外,失败
在一个看似微不足道的处理循环中在大脑或外围的一个看似微不足道的处理循环中,并且通常会导致
引起短暂或永久定义运动控制的戏剧性后果。一个特别明显的
例如,脊髓损伤(SCI)导致的后果,在极端情况下,
使一个人完全无法与周围的世界互动。如此神经系统的伤害和
疾病在平民和退伍军人方面都有长期的健康,经济和社会后果
人口。尽管有最好的医疗治疗,但成千上万的人忍受了很长的时间
SCI的生活感应者的生活定义了极大的影响其生活质量。
该项目的具体目标是建立有关运动皮层(MI)如何控制的基本知识
自愿以及刻板印象,下肢运动,然后设计两个脑螺旋界面
利用完全植入的硬件系统,以及第一个同类端点脑机界面
下肢假肢。我们将研究各种非人类灵长类运动皮层的基本功能
后肢运动,包括在避免障碍期间被动行走,直接终点
在录制高保真神经群体数据和运动学的同时,控制坐着飞轮。最后,我们的
结果将在支持人类翻译的临床研究的背景下进行解释
脊柱损伤退伍军人的康复途径以及截肢者的神经假体途径。我们将
最终确定非人类灵长类运动皮层采用的策略以驱动和调整
运动过程中的后肢放置位置,我们将确定运动皮层活性是否在发生变化
在所谓的“自动”运动(例如在跑步机上行走)和自愿,高度精确的运动之间
运动(例如,飞轮上的端点控制)。
拟议的研究将与经过训练在仪器跑步机上行走的恒河猴合作,穿过公寓
走廊,在大型自然主义漫游空间内免费,并沿着2-控制踏板位置
尺寸飞轮。将动物植入a)两个硅微电极阵列中的动物,然后
包含运动计划信息的前前区域(PMD); b)连接的可植入脉冲发生器
定制硬膜外脊髓刺激微电极阵列; c)关键步态中的肌电图传感器
下肢的肌肉。将在所有运动环境中评估动物
使用无线数据传输自定义的家庭式式笼子。我们将评估BSI的长期使用
恢复功能运动,并支持其他日常非人类灵长类动物活动。最后,我们会的
利用有关运动皮层在机车中的作用的知识以及我们以前的
开发脑脊柱界面,以部署完全植入人类翻译的脑脊柱界面
在VA内,以申请资深的运动康复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Allenson Borton其他文献
David Allenson Borton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Allenson Borton', 18)}}的其他基金
Bridging bench to bedside with aneurotechnology cross-development platform
通过神经技术交叉开发平台将工作台与床边桥接起来
- 批准号:
10640424 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bioengineering a cortical microtissue model to study human microglia in Alzheimer's disease
生物工程皮质微组织模型来研究阿尔茨海默病中的人类小胶质细胞
- 批准号:
10630949 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Bioengineering a cortical microtissue model to study human microglia in Alzheimer's disease
生物工程皮质微组织模型来研究阿尔茨海默病中的人类小胶质细胞
- 批准号:
10448954 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
- 批准号:
10205394 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10470025 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10689290 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10238761 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Large Scale Cortical Laminar Recordings: Novel Instrumentation
大规模皮质层流记录:新颖的仪器
- 批准号:
10078368 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
- 批准号:
10305343 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
- 批准号:
10267899 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Home foot-temperature monitoring through smart mat technology to improve access, equity, and outcomes in high-risk patients with diabetes
通过智能垫技术进行家庭足部温度监测,以改善高危糖尿病患者的可及性、公平性和结果
- 批准号:
10539209 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
- 批准号:
10861531 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
-- - 项目类别: