Is inhibiting pili electrical conductivity a new anti-virulence strategy?
抑制菌毛导电性是一种新的抗毒策略吗?
基本信息
- 批准号:10387218
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivenessAdhesivesAntibiotic ResistanceBacteriaBacterial AdhesionBacterial PiliBinding SitesBiochemistryBiophysicsCellsChargeChemistryCollaborationsCommunitiesDangerousnessDevelopmentDevelopment PlansDockingEducational workshopElectric ConductivityElectron TransportElectronsFellowshipFilamentFree EnergyInfectionInstitutesIntestinesJournalsLigandsMechanicsMediatingMentorsMentorshipMicrobial BiofilmsMolecularMolecular ConformationMutationNatureOutcomePathogenicityPilumPlayPoint MutationPopulationProcessPropertyPseudomonas aeruginosaPublishingPulmonary Cystic FibrosisResearchResistanceRoleScienceStructureSurfaceTechniquesTensile StrengthTheoretical modelTherapeuticThinnessTrainingUniversitiesVirulenceWorkadhesion processantagonistantimicrobialcareer developmentchronic infectioncystic fibrosis patientsdesigndrug discoveryelectrical propertyextracellulargraduate studenthigh throughput screeninghost-microbe interactionshuman pathogeninsightinterfacialkinetic modelmicrobialmicrobial communitymicrobiotamolecular dynamicsnanowirenovel therapeuticspathogenpathogenic bacteriapressurepreventprofessorprospectivequantumrational designreceptorsmall moleculesuccesssymposiumtheoriestreatment strategy
项目摘要
Project Summary
Adhesion of bacteria to host cells is an essential step in the initiation of an infection, and yet, the
mechanisms that make bacteria sticky are not fully understood. A long list of human pathogens, including
Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, become anchored to host cells using thin (<10
nm), long (>1 µm), and mechanically strong (capable of withstanding pN to nN forces) filaments called pili.
The pili latch onto surfaces through receptor-ligand interactions, and only very recently discovered,
extracellular electron transfer. Bacteria with more electrically conductive pili tend to be more adhesive. By
elucidating the mechanistic basis for this observation, we seek to establish design rules for manipulating
microbe-host interactions for therapeutic purposes. New therapies that inhibit pili-mediated charge transfer
could be realized to block the formation of biofilms by pathogenic species, or to correct imbalances in the
populations of adhered intestinal tract microbiota.
To realize these possibilities, we specifically aim to establish the relative contributions of mechanical
and electrical mechanisms in bacterial adhesion mediated by pili. Alchemical and steered molecular dynamics
simulations will be used to assess the change in stability and tensile strength of pili as a function of point
mutations associated with differently adherent bacteria. A quantum mechanical/molecular mechanical
implementation of Marcus theory, combined with a kinetic model, will be used to compute the electrical
conductivity of different pili. The pili will feature mutations according to a direct electronic modulation
strategy: Standard residues will be replaced with substituent-bearing unnatural counterparts that have similar
steric but different electronic properties. The obtained structure-function insights will drive the second aim of
our research to rationally design and evaluate pili antagonists. Fragment dissolved molecular dynamics will be
used to identify prospective binding sites, into which ligands will be docked in a high throughput screen and
optimized by free energy perturbation techniques.
The work will be undertaken at Yale University under the mentorship of Professor Nikhil S. Malvankar
of the Microbial Science Institute within the Molecular Biophysics and Biochemistry department, and in
collaboration with John Randolph Huffman Professor Victor S. Batista of the Chemistry department. Their
combined expertise with bacterial nanowires (Dr. Malvankar) and the theoretical modeling of interfacial
electron transfer processes (Dr. Batista) will serve as unique assists for the success of the project. The
fellowship training plan involves publishing in high impact journals and presenting at conferences for the
biomedical and chemistry communities. It also includes the opportunity to mentor graduate students. The
career development plan includes attending professional development workshops organized by the Office of
Postdoctoral Affairs, as well as courses relevant to the project.
项目摘要
细菌对宿主细胞的粘附是感染倡议的重要步骤,但是,
使细菌粘性的机制尚不完全了解。一长串人类病原体,包括
囊性纤维化患者肺中铜绿假单胞菌的铜绿假单胞菌使用薄(<10)锚定在宿主细胞上(<10
nm),长(> 1 µm)和机械强(能够承受pn到Nn力)的丝,称为pili。
通过受体配体的相互作用,壁块闩锁在表面上,直到最近才发现
细胞外电子转移。具有更具导电性菌毛的细菌往往更具粘性。经过
阐明该观察的机械基础,我们试图建立操纵的设计规则
用于治疗目的的微生物 - 宿主相互作用。抑制pili介导的电荷转移的新疗法
可以实现通过致病物种阻止生物膜的形成,或纠正
粘附的肠道微生物群的种群。
为了实现这些可能性,我们特别旨在建立机械的相对贡献
和细菌粘附中的电机理。炼金术和蒸分子动力学
模拟将用于评估pili的稳定性和拉伸强度的变化作为点的函数
与不同粘附细菌相关的突变。量子机械/分子机械
Marcus理论的实施以及动力学模型将用于计算电气
不同pili的电导率。 pili将根据直接电子调制具有突变
策略:标准残差将被具有相似的宽大不自然对应物取代
空间但不同的电子特性。获得的结构功能见解将推动
我们对合理设计和评估pili拮抗剂的研究。碎片溶解的分子动力学将是
用于识别前瞻性绑定位点,将配体在高吞吐量屏幕中停靠在其中
通过自由能扰动技术优化。
这项工作将在耶鲁大学的尼克希尔·S·马尔万卡教授的指导下在耶鲁大学进行。
分子生物物理学和生物化学系中的微生物科学研究所,在
与化学系的John Randolph Huffman教授Victor S. Batista合作。他们的
与细菌纳米线(Malvankar博士)和界面的理论建模相结合的专业知识
电子转移过程(Batista博士)将作为该项目成功的独特助攻。
奖学金培训计划涉及在高影响期刊上发布,并在会议上介绍
生物医学和化学社区。它还包括智力研究生的机会。这
职业发展计划包括参加由办公室组织的专业发展研讨会
博士后事务以及与该项目相关的课程。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew J. Guberman-pfeffer其他文献
Matthew J. Guberman-pfeffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
- 批准号:
10756875 - 财政年份:2022
- 资助金额:
$ 6.76万 - 项目类别:
Handheld 3D Bioprinting of Self-Healing Hydrogels for Vocal Fold Reconstruction
用于声带重建的自愈水凝胶的手持式 3D 生物打印
- 批准号:
10038971 - 财政年份:2020
- 资助金额:
$ 6.76万 - 项目类别:
Multifidelity and multiscale modeling of the spleen function in sickle cell disease with in vitro, ex vivo and in vivo validations
镰状细胞病脾功能的多保真度和多尺度建模,并进行体外、离体和体内验证
- 批准号:
10685262 - 财政年份:2020
- 资助金额:
$ 6.76万 - 项目类别:
Dysregulation of Platelet-von Willebrand Factor Interaction in Trauma-Induced Coagulopathy
创伤性凝血病中血小板-血管性血友病因子相互作用的失调
- 批准号:
10559557 - 财政年份:2020
- 资助金额:
$ 6.76万 - 项目类别:
Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
- 批准号:
10376043 - 财政年份:2020
- 资助金额:
$ 6.76万 - 项目类别: