Examining the Intersection of Transitional Metals and Kinase Signal Transduction Networks
检查过渡金属和激酶信号转导网络的交叉点
基本信息
- 批准号:10213092
- 负责人:
- 金额:$ 38.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:BiochemistryBiophysicsCardiovascular DiseasesCell DeathCell ProliferationCell divisionCell physiologyCellsCommunicationCopperCuesDevelopmentDietary intakeDiseaseEnzymesEquilibriumExcretory functionFailure to ThriveGoalsGrowthHealthHepatolenticular DegenerationHomeostasisHumanImpaired wound healingInheritedInterventionLinkMAP Kinase GeneMAP2K1 geneMalignant NeoplasmsMapsMenkes Kinky Hair SyndromeMetabolismMicronutrientsMolecularMolecular BiologyNutrientPathway interactionsPatientsPharmacologyPhenotypePhosphotransferasesPhysiologyPrevalenceProcessProteinsSignal PathwaySignal TransductionSignal Transduction PathwayStructureTherapeuticTransition ElementsWorkabsorptionbasebiological systemscell growthcofactorfunctional genomicsin vivointerdisciplinary approachmouse modelnon-alcoholic fatty liver diseasenovelrare genetic disorderresponsetumorigenesis
项目摘要
PROJECT SUMMARY/ ABSTRACT
Normal physiology relies on the precise coordination of intrinsic cues, in the form of intracellular signal
transduction pathways, with extrinsic cues like nutrient availability to balance cell growth and cell death.
Transition metals such as copper (Cu) are tightly regulated micronutrients that function as structural or catalytic
cofactors for proteins that are critical for normal physiology and development. Aberrant Cu excretion and
absorption are manifested in the extremely rare genetic diseases Wilson and Menkes, respectively. The
importance of intact Cu homeostatic mechanisms to cell growth control is underscored by the stunted growth
and failure to thrive associated with Cu deficiency in Menkes disease patients and the prevalence of cancer in
patients with hereditary Cu overload in Wilson disease. Further, Cu is neither created nor destroyed, and
therefore low Cu dietary intake may be a contributing factor in impaired wound healing, cardiovascular disease,
and non-alcoholic fatty liver disease. However, the dysregulation of a handful of currently identified Cu-
dependent enzymes does not fully explain the diverse growth phenotypes associated with alterations in Cu
metabolism. Thus, the direct cellular pathways that respond to and or/sense Cu abundance and are integrated
to influence cellular proliferation remain undefined. Recent work by our group uncovered an unexpected link
between the cellular acquisition of Cu and a mitogenic signaling cascade. In response to proliferative signals,
Cu contributes to the amplitude of canonical MAPK signaling through a direct interaction between Cu and the
kinases MEK1 and MEK2. This is the first example of Cu directly regulating the activity of a mammalian kinase
and has exposed a new signaling paradigm that directly connects Cu to signaling pathway components. Based
on our expertise, our group seeks to define the Cu-responsive and -sensing kinase signal transduction
pathways to determine the mechanisms by which Cu contributes to pro-proliferative cellular processes that are
essential to normal proliferation and are sustained during tumorigenesis. To accomplish our goals, we will
utilize a multidisciplinary approach, which includes in vivo mouse models, biochemistry, biophysics, molecular
biology, functional genomics, and pharmacologic interventions. Specifically, we will: i) elucidate the
molecular mechanisms and cellular contexts that underlie Cu integration into the MAPK pathway, ii)
systematically map Cu utilization by pro-proliferative kinase signal transduction pathways, and iii)
leverage our experimental approaches and findings to other transition metals and kinase signaling
networks in normal homeostasis and cancer. Completion of these studies has the potential to establish Cu
availability as an integral component of intracellular communication and elucidate the molecular mechanism
underlying this unique connection. Further, identifying novel Cu-dependent kinases can be therapeutically
exploited to perturb Cu availability for essential signaling pathways in cancer and other diseases settings.
项目摘要/摘要
正常的生理学依赖于细胞内信号形式的内在线索的精确协调
转导途径,外在的信号,如营养供应,以平衡细胞生长和细胞死亡。
铜等过渡金属是受到严格监管的微量营养素,具有结构性或催化性作用
对正常生理和发育至关重要的蛋白质的辅因子。异常的铜排泄和
吸收分别表现在极其罕见的遗传病威尔逊和门克斯。这个
生长受阻强调了完整的铜平衡机制对细胞生长控制的重要性。
与孟克斯病患者的铜缺乏和癌症患病率有关的发育不良
遗传性铜超载的肝豆状核变性患者。此外,铜既不是被创造的,也不是被摧毁的,而且
因此,低铜饮食摄入量可能是伤口愈合障碍、心血管疾病、
和非酒精性脂肪性肝病。然而,目前发现的几种铜-铜的失调
依赖酶不能完全解释与铜变化相关的不同生长表型
新陈代谢。因此,响应和/或感知铜丰度的直接细胞通路是整合的
影响细胞增殖的机制尚不明确。我们小组最近的研究发现了一个意想不到的联系
在细胞获得铜和有丝分裂信号级联之间。作为对增殖信号的响应,
铜通过铜与MAPK之间的直接相互作用对规范的MAPK信号的幅度做出贡献
激活MEK1和MEK2。这是铜直接调节哺乳动物蛋白激酶活性的第一个例子。
并揭示了一种新的信号模式,将铜与信号通路组件直接联系起来。基座
根据我们的专业知识,我们的团队试图定义铜响应和传感的激酶信号转导
确定铜促进促增殖细胞过程的机制的途径
对正常增殖至关重要,并在肿瘤形成过程中持续存在。为了实现我们的目标,我们将
利用多学科方法,包括活体小鼠模型、生物化学、生物物理学、分子
生物学、功能基因组学和药理学干预。具体来说,我们将:i)阐明
铜整合到MAPK途径的分子机制和细胞环境,II)
通过促增殖激酶信号转导通路系统地定位铜的利用,以及iii)
利用我们的实验方法和发现来研究其他过渡金属和激酶信号
正常动态平衡和癌症的网络。这些研究的完成有可能建立起
可用性作为细胞内通讯的一个组成部分并阐明其分子机制
在这种独特的联系下。此外,鉴定新的铜依赖的激酶可以在治疗上
被利用来扰乱铜在癌症和其他疾病环境中的基本信号通路的可用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donita C Brady其他文献
Donita C Brady的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donita C Brady', 18)}}的其他基金
Unlocking the Chemical Space of Cancer-Associated Perturbations
解锁癌症相关扰动的化学空间
- 批准号:
10478520 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别:
Unlocking the Chemical Space of Cancer-Associated Perturbations
解锁癌症相关扰动的化学空间
- 批准号:
10704558 - 财政年份:2022
- 资助金额:
$ 38.69万 - 项目类别:
Molecular and Cellular Mechanisms of Copper-Dependent Nutrient Signaling and Metabolism
铜依赖性营养信号传导和代谢的分子和细胞机制
- 批准号:
10406688 - 财政年份:2017
- 资助金额:
$ 38.69万 - 项目类别:
Molecular and Cellular Mechanisms of Copper-Dependent Nutrient Signaling and Metabolism
铜依赖性营养信号传导和代谢的分子和细胞机制
- 批准号:
10668539 - 财政年份:2017
- 资助金额:
$ 38.69万 - 项目类别:
Examining the Intersection of Transitional Metals and Kinase Signal Transduction Networks
检查过渡金属和激酶信号转导网络的交叉点
- 批准号:
9978887 - 财政年份:2017
- 资助金额:
$ 38.69万 - 项目类别:
Copper reduction as a novel therapy in BRAF-mutant positive cancers
铜还原作为 BRAF 突变阳性癌症的新疗法
- 批准号:
8565703 - 财政年份:2013
- 资助金额:
$ 38.69万 - 项目类别:
Copper reduction as a novel therapy in BRAF-mutant positive cancers
铜还原作为 BRAF 突变阳性癌症的新疗法
- 批准号:
8737730 - 财政年份:2013
- 资助金额:
$ 38.69万 - 项目类别:
相似海外基金
FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
- 批准号:
EP/Y023684/1 - 财政年份:2024
- 资助金额:
$ 38.69万 - 项目类别:
Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 38.69万 - 项目类别:
Fellowship
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
- 批准号:
2238914 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Continuing Grant
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
- 批准号:
DP230101113 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Discovery Projects
Biophysics of liquid droplets in bacteria
细菌中液滴的生物物理学
- 批准号:
2887560 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Studentship
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Continuing Grant
Center: REU Site: Interdisciplinary Research Opportunities in Biophysics
中心:REU 地点:生物物理学的跨学科研究机会
- 批准号:
2242779 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Standard Grant
Targeted Infusion Project: Creation of a Biophysics minor program for STEM success
有针对性的输液项目:为 STEM 成功创建生物物理学辅修课程
- 批准号:
2306506 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Standard Grant