Using Search Engine Data for Detection and Early Intervention in Suicide Prevention

使用搜索引擎数据进行自杀预防的检测和早期干预

基本信息

  • 批准号:
    10401836
  • 负责人:
  • 金额:
    $ 89.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-05 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT. Decades of research to improve the prevention and early detection of suicide risk has largely resulted in the detection of who is most likely to consider suicide, but not when or if that is most likely to happen. Most detection methods presume patients are in contact with the healthcare system, which only reaches a proportion of the at-risk population. Many people at high risk for suicide do not seek professional help because of lack of time, stigma, and fear regarding how they will be treated in the health care system. It is imperative that we develop methods that can identify proximal risk for suicide that does not depend on system- level contact. Web-based search tools are ubiquitous, with 46% of the global population using the internet for information searches and 1.2 trillion searches per year worldwide. Based on our preliminary data, we propose that this online search-engine behavior may prove to be an effective, private, and immediate method of proximal risk detection of suicide for anyone, regardless of their contact with systems of care. We will recruit 1,000 people with mental illness with varying risk for suicide. Participants will provide us access to Google Take-Out (GTO) data, which includes search-engine history and behavior including YouTube. Participants will include those who have report a suicide attempt in the past year (N=500), those who have made an attempt over a year ago (N=250), and those who have thoughts of suicide but never attempted (N=250). All will participate using gold-standard suicide behavior research instruments. Using a case-crossover design, we will evaluate the intermittent exposures (search based proximal risk factors) with an immediate and transient effect on risk and an abrupt outcome (suicide attempt). The case-crossover design is a well-tested and proven approach especially in cases where transient events can trigger acute events such as cardiovascular events, injuries, and death due to environmental exposures and has been studied with interview data to determine warning signs for suicide attempts. Further for predicting suicidal attempt/s, we will use robust ensemble-based machine learning methods such as random forest, gradient boosting to evaluate the predictive nature of qualitative and quantitative features. The study will conclude in a collaborative dissemination planning process with our community partners. Thus, this retrospective and prospective study that aligns GTO data with carefully assessed suicidal thoughts and behaviors has the potential to identify warning signs in search and YouTube data that predict when suicidal risk and lay the groundwork for innovative pathways to suicide prevention.
摘要。几十年来,针对预防和早期发现自杀风险的研究在很大程度上取得了成功

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia A. Arean其他文献

Patricia A. Arean的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia A. Arean', 18)}}的其他基金

Using Search Engine Data for Detection and Early Intervention in Suicide Prevention
使用搜索引擎数据进行自杀预防的检测和早期干预
  • 批准号:
    10591819
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
Using Search Engine Data for Detection and Early Intervention in Suicide Prevention
使用搜索引擎数据进行自杀预防的检测和早期干预
  • 批准号:
    10207109
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
UW ALACRITY Center for Psychosocial Interventions Research
华盛顿大学 ALACRITY 心理社会干预研究中心
  • 批准号:
    10167248
  • 财政年份:
    2018
  • 资助金额:
    $ 89.9万
  • 项目类别:
UW ALACRITY Center for Psychosocial Interventions Research
华盛顿大学 ALACRITY 心理社会干预研究中心
  • 批准号:
    9914127
  • 财政年份:
    2018
  • 资助金额:
    $ 89.9万
  • 项目类别:
Strategic and Plasticity Interventions for Late Life Depression in Community Settings
社区环境中晚年抑郁症的战略和可塑性干预措施
  • 批准号:
    9062712
  • 财政年份:
    2015
  • 资助金额:
    $ 89.9万
  • 项目类别:
2/2 Stepped, reward-exposure based therapy vs. PST in late life depression
2/2 阶梯式奖励暴露疗法与 PST 治疗晚年抑郁症的比较
  • 批准号:
    9251911
  • 财政年份:
    2015
  • 资助金额:
    $ 89.9万
  • 项目类别:
2/2 Stepped, reward-exposure based therapy vs. PST in late life depression
2/2 阶梯式奖励暴露疗法与 PST 治疗晚年抑郁症的比较
  • 批准号:
    9462224
  • 财政年份:
    2015
  • 资助金额:
    $ 89.9万
  • 项目类别:
Strategic and Plasticity Interventions for Late Life Depression in Community Settings
社区环境中晚年抑郁症的战略和可塑性干预措施
  • 批准号:
    8996065
  • 财政年份:
    2015
  • 资助金额:
    $ 89.9万
  • 项目类别:
2/2 Stepped, reward-exposure based therapy vs. PST in late life depression
2/2 阶梯式奖励暴露疗法与 PST 治疗晚年抑郁症的比较
  • 批准号:
    9142355
  • 财政年份:
    2015
  • 资助金额:
    $ 89.9万
  • 项目类别:
2/2 Stepped, reward-exposure based therapy vs. PST in late life depression
2/2 阶梯式奖励暴露疗法与 PST 治疗晚年抑郁症的比较
  • 批准号:
    8613178
  • 财政年份:
    2014
  • 资助金额:
    $ 89.9万
  • 项目类别:

相似海外基金

Leveraging Implementation Science to Promote Behavior Change and Reduce Cancer Health Disparities among American Indian and Alaska Native Older Adults
利用实施科学促进美洲印第安人和阿拉斯加原住民老年人的行为改变并减少癌症健康差异
  • 批准号:
    10401497
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
Leveraging Implementation Science to Promote Behavior Change and Reduce Cancer Health Disparities among American Indian and Alaska Native Older Adults
利用实施科学促进美洲印第安人和阿拉斯加原住民老年人的行为改变并减少癌症健康差异
  • 批准号:
    10905245
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
Predicting Effects of ENDS Flavor Regulations on Tobacco Behavior, Toxicity, and Abuse Liability among African American Menthol Smokers
预测 ENDS 风味法规对非裔美国薄荷醇吸烟者烟草行为、毒性和滥用责任的影响
  • 批准号:
    10427152
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
Predicting Effects of ENDS Flavor Regulations on Tobacco Behavior, Toxicity, and Abuse Liability among African American Menthol Smokers
预测 ENDS 风味法规对非裔美国薄荷醇吸烟者烟草行为、毒性和滥用责任的影响
  • 批准号:
    10652389
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
Leveraging Implementation Science to Promote Behavior Change and Reduce Cancer Health Disparities among American Indian and Alaska Native Older Adults
利用实施科学促进美洲印第安人和阿拉斯加原住民老年人的行为改变并减少癌症健康差异
  • 批准号:
    10399686
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
Leveraging Implementation Science to Promote Behavior Change and Reduce Cancer Health Disparities among American Indian and Alaska Native Older Adults
利用实施科学促进美洲印第安人和阿拉斯加原住民老年人的行为改变并减少癌症健康差异
  • 批准号:
    10625992
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
Predicting Effects of ENDS Flavor Regulations on Tobacco Behavior, Toxicity, and Abuse Liability among African American Menthol Smokers
预测 ENDS 风味法规对非裔美国薄荷醇吸烟者烟草行为、毒性和滥用责任的影响
  • 批准号:
    10836137
  • 财政年份:
    2021
  • 资助金额:
    $ 89.9万
  • 项目类别:
Doctoral Dissertation Research: The Politics of Place: How Southern Identity Shapes American Political Behavior
博士论文研究:地方政治:南方身份如何塑造美国政治行为
  • 批准号:
    1938806
  • 财政年份:
    2020
  • 资助金额:
    $ 89.9万
  • 项目类别:
    Standard Grant
Leveraging Implementation Science to Promote Behavior Change and Reduce Cancer Health Disparities among American Indian and Alaska Native Older Adults
利用实施科学促进美洲印第安人和阿拉斯加原住民老年人的行为改变并减少癌症健康差异
  • 批准号:
    10065245
  • 财政年份:
    2020
  • 资助金额:
    $ 89.9万
  • 项目类别:
Science of Behavior Change in African American Breast Cancer Survivors
非裔美国乳腺癌幸存者行为改变的科学
  • 批准号:
    9608280
  • 财政年份:
    2018
  • 资助金额:
    $ 89.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了