Using Search Engine Data for Detection and Early Intervention in Suicide Prevention

使用搜索引擎数据进行自杀预防的检测和早期干预

基本信息

  • 批准号:
    10591819
  • 负责人:
  • 金额:
    $ 14.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-05 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT. This is a request to supplement grant award R01MH123484 Using Search Engine Data for Detection and Early Intervention in Suicide Prevention in response to NOT-OD-22-026 Administrative Supplement for Research and Capacity Building Efforts Related to Bioethical Issues. This supplement proposal focuses on Bioethics Research. The parent award will determine whether internet search histories and on search behavior on the Google Search Engine donated by and prospectively collected by people with varying degrees of suicide risk will be successful in determining proximal risk of suicide. In a previous study, people with a recent suicide attempt donated retrospective data downloaded from the Google Take Out tool (GTO). We were able to identify behavioral and linguistic patterns that predicted suicide attempts 30-60 days before the event occurred. The currently funded study will ask 1,000 people with varying risk for suicide to donate retrospective data and to continue to donate these data for 1 year. Participants complete a retrospective interview and prospective surveys every two weeks about the occurrence of suicidal behavior and attempts. Should we be able to demonstrate to scale the same results we found in the previous pilot project, the data from this current study could be game changing in the detection of proximal suicide risk. Given that 77 percent of the US population1 seek information online almost entirely using Google Search, any risk prediction algorithm and subsequent intervention should be able to reach at-risk Americans to prevent this serious public health outcome. However, should we be successful, there are a number of ethical, legal, and societal implications that still need to be addressed. To understand these implications, we will qualitatively interview 50 study participants in a series of focus groups (25 with no previous experience with treatment for suicide and 25 with that experience) and 20 interventionists (clinicians and community workers) about ethical and equitable application of such an algorithm to interventions to prevent suicide. We include the perspectives of interventionists in this study to identify where consumers and interventionists agree on ethical, legal, and societal implications and where there maybe divergence of opinion. Consultation with ethicists will guide the development of the questions and interpretation of results. Guided by the Digital Health Framework, we will present participants with different scenarios about privacy concerns (choice to share, what data to share), risk/benefit concerns (which agent should have access to the MLA and be responsible for acting on a MLA recommendation), accessibility and usability concerns (diversity representation and access; which interventions are acceptable with a specific eye toward moral and equitable resource allocation), and data management concerns (where and how the data should be stored). Participants will also be asked to consider what potential solutions should be used to address these concerns.
抽象的。这是使用搜索引擎数据来补充拨款奖R01MH123484的请求 针对NOT-OD-22-026行政管理,对自杀预防的检测和早期干预 补充与生物伦理问题有关的研究和能力建设工作。该补充提案 专注于生物伦理学研究。父母奖将确定互联网搜索历史和 在Google搜索引擎上捐赠和前瞻性收集的Google搜索引擎的搜索行为 自杀风险将成功确定自杀近端的风险。在先前的研究中,人们 最近,自杀企业捐赠了从Google Take Out Tool(GTO)下载的回顾性数据。 我们能够确定在30-60天之前预测自杀未遂的行为和语言模式 事件发生。目前资助的研究将要求1,000名自杀风险不同的人捐款 回顾性数据,并继续捐赠这些数据一年。参与者完成回顾展 面试和前瞻性调查每两周就自杀行为和企图进行一次调查。 如果我们能够证明在上一个试点项目中发现的相同结果,则数据 从当前的研究中,可能是在发现近端自杀风险的情况下改变游戏。考虑到77% 美国人口1几乎完全使用Google搜索来在线寻求信息,任何风险预测 算法和随后的干预措施应该能够到达处于危险中的美国人,以防止这一严重的公众 健康结果。但是,如果我们成功,有许多道德,合法和社会 仍然需要解决的含义。要了解这些含义,我们将定性采访50 一系列焦点小组的研究参与者(25个没有以前的自杀治疗经验和25 具有这种经验)和20位干预主义者(临床医生和社区工作者)关于道德和公平的 将这种算法应用于干预措施以防止自杀。我们包括 干预主义者在这项研究中确定消费者和干预主义者在道德,法律和 社会含义以及可能存在分歧的地方。与伦理学家的协商将指导 问题的发展和结果解释。在数字健康框架的指导下,我们将 介绍参与者有有关隐私问题的不同情况(选择共享,要共享的数据), 风险/福利问题(哪个代理人应该可以使用MLA并负责在MLA上行事 建议),可访问性和可用性问题(多样性表示和访问; 干预措施是可以接受的,并针对道德和公平资源分配)和数据 管理方面的问题(应存储数据以及如何存储)。还会要求参与者考虑 应使用哪些潜在解决方案来解决这些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia A. Arean其他文献

Patricia A. Arean的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia A. Arean', 18)}}的其他基金

Using Search Engine Data for Detection and Early Intervention in Suicide Prevention
使用搜索引擎数据进行自杀预防的检测和早期干预
  • 批准号:
    10401836
  • 财政年份:
    2021
  • 资助金额:
    $ 14.96万
  • 项目类别:
Using Search Engine Data for Detection and Early Intervention in Suicide Prevention
使用搜索引擎数据进行自杀预防的检测和早期干预
  • 批准号:
    10207109
  • 财政年份:
    2021
  • 资助金额:
    $ 14.96万
  • 项目类别:
UW ALACRITY Center for Psychosocial Interventions Research
华盛顿大学 ALACRITY 心理社会干预研究中心
  • 批准号:
    10167248
  • 财政年份:
    2018
  • 资助金额:
    $ 14.96万
  • 项目类别:
UW ALACRITY Center for Psychosocial Interventions Research
华盛顿大学 ALACRITY 心理社会干预研究中心
  • 批准号:
    9914127
  • 财政年份:
    2018
  • 资助金额:
    $ 14.96万
  • 项目类别:
Strategic and Plasticity Interventions for Late Life Depression in Community Settings
社区环境中晚年抑郁症的战略和可塑性干预措施
  • 批准号:
    9062712
  • 财政年份:
    2015
  • 资助金额:
    $ 14.96万
  • 项目类别:
2/2 Stepped, reward-exposure based therapy vs. PST in late life depression
2/2 阶梯式奖励暴露疗法与 PST 治疗晚年抑郁症的比较
  • 批准号:
    9251911
  • 财政年份:
    2015
  • 资助金额:
    $ 14.96万
  • 项目类别:
2/2 Stepped, reward-exposure based therapy vs. PST in late life depression
2/2 阶梯式奖励暴露疗法与 PST 治疗晚年抑郁症的比较
  • 批准号:
    9462224
  • 财政年份:
    2015
  • 资助金额:
    $ 14.96万
  • 项目类别:
Strategic and Plasticity Interventions for Late Life Depression in Community Settings
社区环境中晚年抑郁症的战略和可塑性干预措施
  • 批准号:
    8996065
  • 财政年份:
    2015
  • 资助金额:
    $ 14.96万
  • 项目类别:
2/2 Stepped, reward-exposure based therapy vs. PST in late life depression
2/2 阶梯式奖励暴露疗法与 PST 治疗晚年抑郁症的比较
  • 批准号:
    9142355
  • 财政年份:
    2015
  • 资助金额:
    $ 14.96万
  • 项目类别:
2/2 Stepped, reward-exposure based therapy vs. PST in late life depression
2/2 阶梯式奖励暴露疗法与 PST 治疗晚年抑郁症的比较
  • 批准号:
    8613178
  • 财政年份:
    2014
  • 资助金额:
    $ 14.96万
  • 项目类别:

相似海外基金

Improving identification and healthcare for patients with Inherited Cancer Syndromes: Evidence-based EMR implementation using a web-based computer platform
改善遗传性癌症综合征患者的识别和医疗保健:使用基于网络的计算机平台实施基于证据的 EMR
  • 批准号:
    10831647
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
  • 批准号:
    10834339
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
MATCHES: Making Telehealth Delivery of Cancer Care at Home Effective and Safe - Addressing missing data in the MATCHES study to improve ML/AI readiness
MATCHES:使远程医疗在家中有效且安全地提供癌症护理 - 解决 MATCHES 研究中缺失的数据,以提高 ML/AI 的准备情况
  • 批准号:
    10842906
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
Administrative Supplement - Rapid Actionable Data for Opioid Response in Kentucky (RADOR-KY)
行政补充 - 肯塔基州阿片类药物反应的快速可操作数据 (RADOR-KY)
  • 批准号:
    10850016
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
Using System Dynamics Modeling to Foster Real-time Connections to Care
使用系统动力学建模促进实时护理联系
  • 批准号:
    10851137
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了