Dissecting the Multivariate Genetic Architecture of Psychiatric Diseases
剖析精神疾病的多变量遗传结构
基本信息
- 批准号:10401847
- 负责人:
- 金额:$ 64.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-17 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAtlasesBehaviorBehavioralBioinformaticsBiologicalCategoriesCircadian RhythmsCommunitiesComplexComputer softwareDataDerivation procedureDiagnosticDimensionsDiseaseExhibitsFemaleFrightGenesGeneticGenetic DriftGenetic ModelsGenetic RiskGenetic VariationGenomicsGoalsHeritabilityHuman CharacteristicsIndividualInvestmentsJointsKnowledgeLifeMagnetic Resonance ImagingMathematicsMeasurementMental disordersMeta-AnalysisMethodsModelingNational Institute of Mental HealthNatureNeuronsOntologyOutcomeOutputPatient Self-ReportPatternPhenotypePreventionPublicationsRegistriesReproducibilityResearchResearch Domain CriteriaRiskRisk-TakingSamplingSampling StudiesSchizophreniaSecureSpecific qualifier valueSystemTestingTissuesUpdateVariantalcohol use disorderbasebiobankbiological sexcell typedata resourcedisorder riskgenetic architecturegenetic associationgenome wide association studygenome-wideinsightinterestmalenovelopen sourceopen source toolpleiotropismpsychiatric comorbiditypsychogeneticspsychosocialresearch studyrisk sharingsexsimulationsocialtooltraituser-friendly
项目摘要
PROJECT SUMMARY
Psychiatric disorders are highly polygenic, exhibit a complex pattern of genetic correlations across the full
spectrum of diagnostic categories. Genetic risk for psychiatric disorders acts via a poorly understood set of
intermediate mechanisms. With substantial investments in large consortia, registry-based efforts, and national
biobanks, genome-wide association studies (GWAS) of psychiatric disorders and related quantitative
phenotypes have made substantial strides in attaining the power needed to detect reproducible genetic
associations, estimate genome-wide chip heritabilities, and estimate genetic correlations between traits.
Combined with bioinformatic approaches, GWAS efforts have produced insights into tissues and cell types
relevant to psychiatric disease, and atlases of genetic correlations have rapidly expanded the ontological
network of descriptive knowledge of shared genetic architecture across psychiatric diseases and social,
behavioral, and biological traits. In order to more fully capitalize on this growing corpus of GWAS research
output, we have recently introduced Genomic Structural Equating Modeling (Genomic SEM; Grotzinger et al.,
2019; Nature Human Behaviour), an analytic framework and associated software for multivariate modelling of
genetic architecture using GWAS summary data from samples of varying or unknown degrees of overlap. The
primary goal of this R01 proposal is to capitalize on and further develop Genomic SEM to formally
investigate genetic risk sharing across psychiatric disorders and- equally importantly- genetic
differentiation between them. We will (1) identify transdiagnostic dimensions of genetic sharing across
psychiatric disorders, and test for commonalities and divergence in genetic associations with biological and
psychosocial dimensions of potentially cross-cutting genetic risk; (2) Identify gene sets and categories that
contribute disproportionately to risk sharing across disorders and/or to disorder-specific genetic variation; (3)
Formally distinguish disorder-general from disorder-specific Loci; and (4) Considerably expand the suite of
methods currently available in Genomic SEM software to meet increasing demand by the genetics community.
The availability of sex-stratified GWAS summary data will allow us to examine convergent and divergent
patterns of association and multivariate genetic architecture across males and females. Moreover, we will
incorporate cutting edge methods for modeling trans-ethnic data, which will be of increasing value as more
diverse GWAS samples become available. This project will constitute the most comprehensive interrogation of
the shared and disorder-specific genetic architecture of major psychiatric disorders and their relationships to
biological and psychosocial dimensions of potentially cross-cutting genetic risk, and will provide an expanded
suite of novel, user friendly, free, open-source tools that serve the entire genetics community.
项目摘要
精神疾病是高度多基因的,在整个方面表现出复杂的遗传相关模式
诊断类别的范围。精神疾病的遗传风险通过一组知识
中间机制。在大型财团,基于注册表的努力和国家
生物库,全基因组关联研究(GWAS)精神疾病和相关定量
表型在获得检测可再现遗传所需的能力方面取得了长足的进步
关联,估计全基因组芯片遗产以及估计性状之间的遗传相关性。
与生物信息学方法相结合,GWAS的努力产生了对组织和细胞类型的见解
与精神疾病和遗传相关的地图相关,已迅速扩大本体论
跨精神病和社会共享遗传结构的描述性知识网络,
行为和生物学特征。为了更充分利用这种不断增长的GWAS研究
输出,我们最近引入了基因组结构等分模型(基因组SEM; Grotzinger等,,,,
2019;自然人类行为),一种用于多元建模的分析框架和相关软件
使用GWAS汇总数据的遗传结构来自不同或未知的重叠度的样本。这
该R01提案的主要目标是将基因组SEM扩展并进一步发展为正式
研究跨精神病疾病及其同等重要的遗传风险共享 - 遗传
它们之间的区别。我们将(1)确定跨遗传共享的经诊断维度
精神疾病,并测试与生物学和生物学和生物学的遗传关联中的共同点和差异
潜在的跨遗传风险的社会心理维度; (2)确定基因集和类别
为跨疾病和/或特定疾病特定的遗传变异而造成不成比例的风险共享; (3)
正式区分障碍特定基因症; (4)大大扩展了
当前在基因组SEM软件中可用的方法满足遗传学社区不断增长的需求。
性别分层的GWAS摘要数据的可用性将使我们能够检查收敛性和分歧
跨男性和女性的关联和多元遗传结构的模式。而且,我们会的
合并用于建模跨种族数据的前沿方法,随着更多
多样化的GWAS样品可用。该项目将构成最全面的审讯
主要精神疾病的共同且特定的遗传结构及其与他们的关系
潜在跨切割遗传风险的生物学和社会心理维度,并将提供扩大的
一套新颖,用户友好,免费,开源工具,可为整个遗传学社区提供服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michel Guillaume Nivard其他文献
Michel Guillaume Nivard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michel Guillaume Nivard', 18)}}的其他基金
Dissecting the Multivariate Genetic Architecture of Psychiatric Diseases
剖析精神疾病的多变量遗传结构
- 批准号:
10219138 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
Dissecting the Multivariate Genetic Architecture of Psychiatric Diseases
剖析精神疾病的多变量遗传结构
- 批准号:
10627791 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
Dissecting the Multivariate Genetic Architecture of Psychiatric Diseases
剖析精神疾病的多变量遗传结构
- 批准号:
10055852 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
相似国自然基金
城市区域专题地图集多元耦合信息设计模式
- 批准号:41871374
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
集胞藻膜蛋白地图集的构建
- 批准号:31670234
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
中国古代城市地图的收集、整理、研究和编纂
- 批准号:49771008
- 批准年份:1997
- 资助金额:13.0 万元
- 项目类别:面上项目
应用系统科学进行地图集设计系统工程化、标准化研究
- 批准号:49271061
- 批准年份:1992
- 资助金额:7.0 万元
- 项目类别:面上项目
<<中国古代地图集>>(清代)
- 批准号:49171004
- 批准年份:1991
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
The impact of early life opioid exposure on the molecular and functional trajectories of septal cell types
生命早期阿片类药物暴露对隔膜细胞类型分子和功能轨迹的影响
- 批准号:
10775154 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别:
The Structure and Function of Ipsilateral Corticospinal Projections
同侧皮质脊髓投射的结构和功能
- 批准号:
10678301 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别:
Molecular and functional architecture of a premotor circuit for decision making
用于决策的前运动电路的分子和功能架构
- 批准号:
10651389 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别:
Implications of Prefrontal Cortex Development for Adolescent Reward Seeking Behavior
前额皮质发育对青少年奖励寻求行为的影响
- 批准号:
10739548 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别: