Dissecting the Multivariate Genetic Architecture of Psychiatric Diseases
剖析精神疾病的多变量遗传结构
基本信息
- 批准号:10627791
- 负责人:
- 金额:$ 63.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-17 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAtlasesBehaviorBehavioralBioinformaticsBiologicalCategoriesCircadian RhythmsCommunitiesComplexComputer softwareDataDerivation procedureDiagnosticDimensionsDiseaseEquationEthnic OriginExhibitsFemaleFrightGenesGeneticGenetic DriftGenetic ModelsGenetic RiskGenetic VariationGenomicsGoalsHeritabilityHuman CharacteristicsIndividualInvestmentsJointsKnowledgeLifeMagnetic Resonance ImagingMathematicsMeasurementMental disordersMethodsModelingNational Institute of Mental HealthNatureNeuronsOntologyOutcomeOutputPatient Self-ReportPatternPhenotypePreventionPublicationsRegistriesReproducibilityResearchResearch Domain CriteriaRiskRisk TakingSamplingSampling StudiesSchizophreniaSecureSpecific qualifier valueSystemTestingTissuesUpdateVariantalcohol use disorderbasebiobankbiological sexcell typedata resourcedisorder riskfunctional/structural genomicsgene conservationgenetic architecturegenetic associationgenome wide association studygenome-wideinsightinterestmalenovelopen sourceopen source toolpleiotropismpsychiatric comorbiditypsychogeneticspsychosocialresearch studyrisk sharingsexsimulationsocialtooltraituser-friendly
项目摘要
PROJECT SUMMARY
Psychiatric disorders are highly polygenic, exhibit a complex pattern of genetic correlations across the full
spectrum of diagnostic categories. Genetic risk for psychiatric disorders acts via a poorly understood set of
intermediate mechanisms. With substantial investments in large consortia, registry-based efforts, and national
biobanks, genome-wide association studies (GWAS) of psychiatric disorders and related quantitative
phenotypes have made substantial strides in attaining the power needed to detect reproducible genetic
associations, estimate genome-wide chip heritabilities, and estimate genetic correlations between traits.
Combined with bioinformatic approaches, GWAS efforts have produced insights into tissues and cell types
relevant to psychiatric disease, and atlases of genetic correlations have rapidly expanded the ontological
network of descriptive knowledge of shared genetic architecture across psychiatric diseases and social,
behavioral, and biological traits. In order to more fully capitalize on this growing corpus of GWAS research
output, we have recently introduced Genomic Structural Equating Modeling (Genomic SEM; Grotzinger et al.,
2019; Nature Human Behaviour), an analytic framework and associated software for multivariate modelling of
genetic architecture using GWAS summary data from samples of varying or unknown degrees of overlap. The
primary goal of this R01 proposal is to capitalize on and further develop Genomic SEM to formally
investigate genetic risk sharing across psychiatric disorders and- equally importantly- genetic
differentiation between them. We will (1) identify transdiagnostic dimensions of genetic sharing across
psychiatric disorders, and test for commonalities and divergence in genetic associations with biological and
psychosocial dimensions of potentially cross-cutting genetic risk; (2) Identify gene sets and categories that
contribute disproportionately to risk sharing across disorders and/or to disorder-specific genetic variation; (3)
Formally distinguish disorder-general from disorder-specific Loci; and (4) Considerably expand the suite of
methods currently available in Genomic SEM software to meet increasing demand by the genetics community.
The availability of sex-stratified GWAS summary data will allow us to examine convergent and divergent
patterns of association and multivariate genetic architecture across males and females. Moreover, we will
incorporate cutting edge methods for modeling trans-ethnic data, which will be of increasing value as more
diverse GWAS samples become available. This project will constitute the most comprehensive interrogation of
the shared and disorder-specific genetic architecture of major psychiatric disorders and their relationships to
biological and psychosocial dimensions of potentially cross-cutting genetic risk, and will provide an expanded
suite of novel, user friendly, free, open-source tools that serve the entire genetics community.
项目概要
精神疾病是高度多基因的,在整个系统中表现出复杂的遗传相关模式。
诊断类别的范围。精神疾病的遗传风险通过一组鲜为人知的机制发挥作用
中间机制。通过对大型财团、基于注册管理机构的努力和国家的大量投资
生物库、精神疾病的全基因组关联研究 (GWAS) 和相关定量
表型在获得检测可重复遗传所需的能力方面取得了长足的进步
关联,估计全基因组芯片遗传力,并估计性状之间的遗传相关性。
与生物信息学方法相结合,GWAS 的努力产生了对组织和细胞类型的见解
与精神疾病相关,遗传相关图谱迅速扩展了本体论
跨精神疾病和社会的共享遗传结构的描述性知识网络,
行为和生物学特征。为了更充分地利用不断增长的 GWAS 研究资料库
输出,我们最近引入了基因组结构等同建模(Genomic SEM;Grotzinger 等人,
2019; Nature Human Behaviour),用于多变量建模的分析框架和相关软件
使用来自不同或未知重叠程度的样本的 GWAS 汇总数据的遗传结构。这
该 R01 提案的主要目标是利用并进一步开发基因组 SEM,以正式
研究精神疾病之间的遗传风险共享,以及同样重要的遗传风险
他们之间的区别。我们将(1)确定基因共享的跨诊断维度
精神疾病,并测试与生物和精神疾病的遗传关联的共性和差异
潜在交叉遗传风险的心理社会维度; (2) 识别基因组和类别
不成比例地促进跨疾病的风险分担和/或疾病特异性遗传变异; (3)
正式区分一般疾病基因座和特定疾病基因座; (4) 大幅扩展套件
基因组 SEM 软件中当前可用的方法可满足遗传学界日益增长的需求。
性别分层 GWAS 摘要数据的可用性将使我们能够检查趋同性和趋异性
男性和女性之间的关联模式和多元遗传结构。此外,我们将
结合对跨种族数据进行建模的尖端方法,随着更多人的参与,这将具有越来越大的价值
多种 GWAS 样本可供使用。该项目将构成对
主要精神疾病的共享和疾病特异性遗传结构及其与
潜在交叉遗传风险的生物和心理社会维度,并将提供扩大的
一套新颖、用户友好、免费、开源的工具,为整个遗传学界服务。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interactions between Polygenic Scores and Environments: Methodological and Conceptual Challenges.
- DOI:10.15195/v7.a19
- 发表时间:2020-09
- 期刊:
- 影响因子:3.4
- 作者:Domingue, Benjamin;Trejo, Sam;Armstrong-Carter, Emma;Tucker-Drob, Elliot
- 通讯作者:Tucker-Drob, Elliot
Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis.
- DOI:10.1038/s41467-023-36605-x
- 发表时间:2023-02-20
- 期刊:
- 影响因子:16.6
- 作者:Grotzinger, Andrew D.;Mallard, Travis T.;Liu, Zhaowen;Seidlitz, Jakob;Ge, Tian;Smoller, Jordan W.
- 通讯作者:Smoller, Jordan W.
No effects of siblings and twin testosterone transfer on autistic traits.
- DOI:10.1002/jcv2.12069
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:de Wit, Melanie M;Begeer, Sander;Nivard, Michel G;van Bergen, Elsje
- 通讯作者:van Bergen, Elsje
Direct and Indirect Genetic Effects on Aggression.
- DOI:10.1016/j.bpsgos.2023.04.006
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shared genetic architecture across psychiatric disorders.
跨精神病障碍共享遗传结构。
- DOI:10.1017/s0033291721000829
- 发表时间:2021-10
- 期刊:
- 影响因子:6.9
- 作者:Grotzinger, Andrew D.
- 通讯作者:Grotzinger, Andrew D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michel Guillaume Nivard其他文献
Michel Guillaume Nivard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michel Guillaume Nivard', 18)}}的其他基金
Dissecting the Multivariate Genetic Architecture of Psychiatric Diseases
剖析精神疾病的多变量遗传结构
- 批准号:
10219138 - 财政年份:2020
- 资助金额:
$ 63.36万 - 项目类别:
Dissecting the Multivariate Genetic Architecture of Psychiatric Diseases
剖析精神疾病的多变量遗传结构
- 批准号:
10401847 - 财政年份:2020
- 资助金额:
$ 63.36万 - 项目类别:
Dissecting the Multivariate Genetic Architecture of Psychiatric Diseases
剖析精神疾病的多变量遗传结构
- 批准号:
10055852 - 财政年份:2020
- 资助金额:
$ 63.36万 - 项目类别:
相似海外基金
BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
- 批准号:
23KF0076 - 财政年份:2023
- 资助金额:
$ 63.36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
- 批准号:
10740308 - 财政年份:2023
- 资助金额:
$ 63.36万 - 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 63.36万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10743857 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10558629 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10508739 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
- 批准号:
RGPIN-2018-05283 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10364874 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 63.36万 - 项目类别: