Predicting Long-Term Chemotherapy-Related Cognitive Impairment
预测长期化疗相关的认知障碍
基本信息
- 批准号:10402797
- 负责人:
- 金额:$ 53.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvant ChemotherapyAdverse eventAffectAlgorithmsAttentionBrainBrain InjuriesChemotherapy-Oncologic ProcedureClinical ManagementCognitiveCognitive deficitsDataDecision MakingDiffuseDiffusion Magnetic Resonance ImagingDiseaseEnrollmentFemaleFunctional Magnetic Resonance ImagingGeneral AnesthesiaGoalsHomeImpaired cognitionImpairmentIncidenceInjuryLifeMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMeasurementMeasuresMedicalMemoryMethodsModelingMotorNewly DiagnosedOccupationalOncologistOperative Surgical ProceduresOutcomePatientsPatternPropertyPublic HealthQuality of lifeResearchRiskRoleSamplingScheduleSensoryStructureSyndromeTestingThinkingTimeTreatment ProtocolsValidationWomanWorkbasechemobrainchemotherapyclinical practiceconnectomedisabilityexperiencefallsimprovedindividual patientinsightmachine learning algorithmmachine learning modelmalignant breast neoplasmmultimodal neuroimagingneuroimagingneuromechanismnoveloutcome predictionprediction algorithmpredictive modelingsocial
项目摘要
ABSTRACT
Chemotherapy-related cognitive impairment (CRCI) affects an estimated 60% of patients, negatively
impacting quality of life. Currently, there is no established method for predicting which patients will
develop CRCI. This information could be practice-changing by assisting clinicians with treatment
decision-making for individual patients. We have shown that the brain network (“connectome”) is
significantly altered in patients with CRCI. Therefore, we measured the connectome is patients prior to
any treatment and demonstrated that these connectome properties could be used in combination with
machine learning to predict 1 year post-chemotherapy cognitive impairment with 100% accuracy. The
proposed project aims to test this preliminary prediction model in a new, larger sample with the
overarching goal of validating its use for clinical practice. We will enroll 100 newly diagnosed patients
with primary breast cancer scheduled for adjuvant chemotherapy who will be assessed prior to any
treatment, including surgery with general anesthesia, 1 month after chemotherapy treatment and again
1 year later. We will also enroll matched healthy female controls who will be assessed at yoked
intervals. We will combine these data with retrospective data we obtained during a prior study for a
total sample of 150 in each group. Data from healthy controls will be used to determine impairment
status in patients with breast cancer and to provide a template of typical connectome organization for
comparison. We hypothesize that our machine learning model will accurately predict 1 year post-
chemotherapy cognitive impairment and that it will be more accurate than a model that includes patient-
related and medical variables alone. We will also examine longitudinal changes in connectome
organization associated with impairment subtypes (i.e. persistent vs. late onset impairment) as well as
changes in specific functional networks (e.g. default mode, salience, executive-attention and sensory-
motor networks). This information will provide novel insights regarding the neural mechanisms of CRCI
and may also help us refine our prediction models.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHELLI R KESLER其他文献
SHELLI R KESLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHELLI R KESLER', 18)}}的其他基金
Using Connectomics and Machine Learning to Predict Survival in Diffuse Glioma
使用连接组学和机器学习来预测弥漫性胶质瘤的生存率
- 批准号:
10289350 - 财政年份:2021
- 资助金额:
$ 53.53万 - 项目类别:
Predicting Long-Term Chemotherapy-Related Cognitive Impairment
预测长期化疗相关的认知障碍
- 批准号:
10617793 - 财政年份:2019
- 资助金额:
$ 53.53万 - 项目类别:
Predicting Long-Term Chemotherapy-Related Cognitive Impairment
预测长期化疗相关的认知障碍
- 批准号:
9899955 - 财政年份:2019
- 资助金额:
$ 53.53万 - 项目类别:
Multimodal MRI Biomarker of Mild Cognitive Impairment in Breast Cancer
乳腺癌轻度认知障碍的多模态 MRI 生物标志物
- 批准号:
8690626 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
Prefrontal cortex abnormalities associated with breast cancer chemotherapy
与乳腺癌化疗相关的前额皮质异常
- 批准号:
8417775 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
Prefrontal cortex abnormalities associated with breast cancer chemotherapy
与乳腺癌化疗相关的前额皮质异常
- 批准号:
8551653 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
Multimodal MRI Biomarker of Mild Cognitive Impairment in Breast Cancer
乳腺癌轻度认知障碍的多模态 MRI 生物标志物
- 批准号:
8551730 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
Prefrontal cortex abnormalities associated with breast cancer chemotherapy
与乳腺癌化疗相关的前额皮质异常
- 批准号:
8712422 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
Multimodal MRI Biomarker of Mild Cognitive Impairment in Breast Cancer
乳腺癌轻度认知障碍的多模态 MRI 生物标志物
- 批准号:
9358338 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
Prefrontal cortex abnormalities associated with breast cancer chemotherapy
与乳腺癌化疗相关的前额皮质异常
- 批准号:
9024010 - 财政年份:2012
- 资助金额:
$ 53.53万 - 项目类别:
相似海外基金
3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
- 批准号:
10556192 - 财政年份:2023
- 资助金额:
$ 53.53万 - 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
- 批准号:
10315227 - 财政年份:2021
- 资助金额:
$ 53.53万 - 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
- 批准号:
443988 - 财政年份:2021
- 资助金额:
$ 53.53万 - 项目类别:
Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
- 批准号:
20K09011 - 财政年份:2020
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
- 批准号:
19K09130 - 财政年份:2019
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
- 批准号:
19K18225 - 财政年份:2019
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
- 批准号:
18K16337 - 财政年份:2018
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
- 批准号:
10005254 - 财政年份:2018
- 资助金额:
$ 53.53万 - 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
- 批准号:
9763320 - 财政年份:2018
- 资助金额:
$ 53.53万 - 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
- 批准号:
18K07341 - 财政年份:2018
- 资助金额:
$ 53.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)