Predicting Long-Term Chemotherapy-Related Cognitive Impairment
预测长期化疗相关的认知障碍
基本信息
- 批准号:10617793
- 负责人:
- 金额:$ 50.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvant ChemotherapyAdverse eventAffectAlgorithmsAttentionBrainBrain InjuriesBreast Cancer therapyChemotherapy-Oncologic ProcedureClinical ManagementCognitive TherapyCognitive deficitsDataDecision MakingDiffuseDiffusion Magnetic Resonance ImagingDiseaseEnrollmentFemaleFunctional Magnetic Resonance ImagingGeneral AnesthesiaGoalsHomeImpaired cognitionImpairmentIncidenceInjuryLifeMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMeasurementMeasuresMedicalMemoryMethodsModelingMotorNewly DiagnosedOccupationalOncologistOperative Surgical ProceduresOutcomePatientsPatternPropertyPublic HealthQuality of lifeResearchRiskRoleSamplingScheduleSensoryStructureSyndromeTestingThinkingTimeTreatment ProtocolsValidationWomanWorkcancer therapychemobrainchemotherapyclinical practiceconnectomedisabilityexperiencefallsimprovedindividual patientinsightmachine learning modelmachine learning prediction algorithmmalignant breast neoplasmmultimodal neuroimagingneuroimagingneuromechanismnoveloutcome predictionprediction algorithmpredictive modelingsocial
项目摘要
ABSTRACT
Chemotherapy-related cognitive impairment (CRCI) affects an estimated 60% of patients, negatively
impacting quality of life. Currently, there is no established method for predicting which patients will
develop CRCI. This information could be practice-changing by assisting clinicians with treatment
decision-making for individual patients. We have shown that the brain network (“connectome”) is
significantly altered in patients with CRCI. Therefore, we measured the connectome is patients prior to
any treatment and demonstrated that these connectome properties could be used in combination with
machine learning to predict 1 year post-chemotherapy cognitive impairment with 100% accuracy. The
proposed project aims to test this preliminary prediction model in a new, larger sample with the
overarching goal of validating its use for clinical practice. We will enroll 100 newly diagnosed patients
with primary breast cancer scheduled for adjuvant chemotherapy who will be assessed prior to any
treatment, including surgery with general anesthesia, 1 month after chemotherapy treatment and again
1 year later. We will also enroll matched healthy female controls who will be assessed at yoked
intervals. We will combine these data with retrospective data we obtained during a prior study for a
total sample of 150 in each group. Data from healthy controls will be used to determine impairment
status in patients with breast cancer and to provide a template of typical connectome organization for
comparison. We hypothesize that our machine learning model will accurately predict 1 year post-
chemotherapy cognitive impairment and that it will be more accurate than a model that includes patient-
related and medical variables alone. We will also examine longitudinal changes in connectome
organization associated with impairment subtypes (i.e. persistent vs. late onset impairment) as well as
changes in specific functional networks (e.g. default mode, salience, executive-attention and sensory-
motor networks). This information will provide novel insights regarding the neural mechanisms of CRCI
and may also help us refine our prediction models.
抽象的
化学疗法相关的认知障碍(CRCI)影响约60%的患者,负面影响
影响生活质量。目前,尚无既定方法来预测哪些患者将
开发CRCI。通过协助临床医生进行治疗,这些信息可能会改变
针对个别患者的决策。我们已经证明了大脑网络(“ Connectome”)是
CRCI患者的明显改变。因此,我们测量了连接组是患者
任何处理并证明这些连接特性可以与
机器学习以100%精度预测化学后认知障碍1年。这
拟议的项目旨在在一个新的,更大的样本中测试此初步预测模型
验证其用于临床实践的总体目标。我们将注册100名新诊断的患者
原发性乳腺癌计划进行调整化疗,他们将在任何之前进行评估
治疗,包括全身麻醉的手术,在化学疗法治疗后1个月,再次
1年后。我们还将注册匹配的健康女性对照组,他们将在Yoked中进行评估
间隔。我们将将这些数据与我们在先前研究中获得的回顾性数据相结合
每组的总样本为150。来自健康控制的数据将用于确定损害
乳腺癌患者的状态,并为典型的Connectome组织提供模板
比较。我们假设我们的机器学习模型将在1年后准确预测
化学疗法的认知障碍,并且比包括患者的模型更准确
仅相关和医疗变量。我们还将检查Connectome的纵向变化
与损伤子类型相关的组织(即持续性与晚发性损害)以及
特定功能网络的变化(例如默认模式,显着性,执行注意力和感觉 -
电机网络)。这些信息将提供有关CRCI神经机制的新见解
并且也可以帮助我们完善我们的预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHELLI R KESLER其他文献
SHELLI R KESLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHELLI R KESLER', 18)}}的其他基金
Using Connectomics and Machine Learning to Predict Survival in Diffuse Glioma
使用连接组学和机器学习来预测弥漫性胶质瘤的生存率
- 批准号:
10289350 - 财政年份:2021
- 资助金额:
$ 50.05万 - 项目类别:
Predicting Long-Term Chemotherapy-Related Cognitive Impairment
预测长期化疗相关的认知障碍
- 批准号:
9899955 - 财政年份:2019
- 资助金额:
$ 50.05万 - 项目类别:
Predicting Long-Term Chemotherapy-Related Cognitive Impairment
预测长期化疗相关的认知障碍
- 批准号:
10402797 - 财政年份:2019
- 资助金额:
$ 50.05万 - 项目类别:
Multimodal MRI Biomarker of Mild Cognitive Impairment in Breast Cancer
乳腺癌轻度认知障碍的多模态 MRI 生物标志物
- 批准号:
8690626 - 财政年份:2012
- 资助金额:
$ 50.05万 - 项目类别:
Prefrontal cortex abnormalities associated with breast cancer chemotherapy
与乳腺癌化疗相关的前额皮质异常
- 批准号:
8417775 - 财政年份:2012
- 资助金额:
$ 50.05万 - 项目类别:
Prefrontal cortex abnormalities associated with breast cancer chemotherapy
与乳腺癌化疗相关的前额皮质异常
- 批准号:
8551653 - 财政年份:2012
- 资助金额:
$ 50.05万 - 项目类别:
Multimodal MRI Biomarker of Mild Cognitive Impairment in Breast Cancer
乳腺癌轻度认知障碍的多模态 MRI 生物标志物
- 批准号:
8551730 - 财政年份:2012
- 资助金额:
$ 50.05万 - 项目类别:
Prefrontal cortex abnormalities associated with breast cancer chemotherapy
与乳腺癌化疗相关的前额皮质异常
- 批准号:
8712422 - 财政年份:2012
- 资助金额:
$ 50.05万 - 项目类别:
Multimodal MRI Biomarker of Mild Cognitive Impairment in Breast Cancer
乳腺癌轻度认知障碍的多模态 MRI 生物标志物
- 批准号:
9358338 - 财政年份:2012
- 资助金额:
$ 50.05万 - 项目类别:
Prefrontal cortex abnormalities associated with breast cancer chemotherapy
与乳腺癌化疗相关的前额皮质异常
- 批准号:
9024010 - 财政年份:2012
- 资助金额:
$ 50.05万 - 项目类别:
相似国自然基金
新辅助化疗后CXCL12+CAF诱导胰腺癌三级淋巴结构表型特征与空间定位的分子机制研究
- 批准号:82373296
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
LncRNA SRA1/SPTBN1复合物调控UGT1A家族增加药物水溶性促进Her-2阳性乳腺癌新辅助化疗耐药
- 批准号:32360144
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
影像组学联合类器官探究膀胱癌分子分型与新辅助化疗疗效的关系及构建疗效预测模型
- 批准号:82302304
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多时序CT影像与病理WSI智能预测局部进展期胃癌新辅助化疗疗效的研究
- 批准号:82371952
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Molecular engineering and systematic evaluation of bispecific aptamers to develop potent and efficacious therapies for the immunomodulation of Non-Small Cell Lung Cancer
双特异性适体的分子工程和系统评估,以开发有效的非小细胞肺癌免疫调节疗法
- 批准号:
10751309 - 财政年份:2023
- 资助金额:
$ 50.05万 - 项目类别:
Using implantable microdevices for deep phenotyping of multiple drug responses in brain tumor patients
使用植入式微型设备对脑肿瘤患者的多种药物反应进行深度表型分析
- 批准号:
10732396 - 财政年份:2023
- 资助金额:
$ 50.05万 - 项目类别:
A pH Responsive Transistor-like Nanoprobe for Sensitive Detection of Unknown Primary Cancers of the Head and Neck
pH 响应型晶体管纳米探针,用于灵敏检测头颈部未知原发性癌症
- 批准号:
10348627 - 财政年份:2022
- 资助金额:
$ 50.05万 - 项目类别:
Neoadjuvant checkpoint blockade for recurrent glioblastoma
新辅助检查点阻断治疗复发性胶质母细胞瘤
- 批准号:
10343478 - 财政年份:2022
- 资助金额:
$ 50.05万 - 项目类别:
Neoadjuvant checkpoint blockade for recurrent glioblastoma
新辅助检查点阻断治疗复发性胶质母细胞瘤
- 批准号:
10661485 - 财政年份:2022
- 资助金额:
$ 50.05万 - 项目类别: