Deep learning in cervical cancer radiogenomics
宫颈癌放射基因组学中的深度学习
基本信息
- 批准号:10424854
- 负责人:
- 金额:$ 22.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-13 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressAffectBiologicalBiological MarkersBiologyBiopsy SpecimenCancer PatientCervix NeoplasmsCessation of lifeCharacteristicsClinicalClinical DataComplexDataData ReportingData SetDimensionsDiseaseEarly InterventionEquationFutureGene ExpressionGenesGenomicsGenotypeGoalsHPV oropharyngeal cancerHPV-High RiskHuman PapillomavirusImageInvestigational TherapiesLeadLearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of cervix uteriMethodologyMethodsModalityModelingOncogenicOrganoidsOutcomePathway interactionsPatient Outcomes AssessmentsPatient-Focused OutcomesPatientsPatternPhenotypePositron-Emission TomographyPrediction of Response to TherapyPredictive ValueRadiation Dose UnitRadiation therapyRadiogenomicsReaction TimeRecurrenceRegimenResearchRiskSample SizeSamplingStructural GenesStructureSurvival RateThe Cancer Genome AtlasTherapy Clinical TrialsTimeTreatment FailureTreatment outcomeTumor BankWomanX-Ray Computed Tomographyadvanced diseaseautoencoderbasecancer diagnosiscancer recurrencecancer subtypescancer survivalcancer typechemoradiationclinical phenotypeclinical predictorsclinical trial enrollmentclinically relevantcohortcomplex datadeep learningdeep learning modeldesigndifferential expressionepithelial to mesenchymal transitionexperiencefeature selectionfollow-upgenerative adversarial networkgenomic datahigh dimensionalityimprovedinsightnetwork modelsneural networknovelpatient stratificationpersonalized medicinepredicting responsepredictive markerpredictive modelingprognosticprospectiveradiation responseradiomicsresearch clinical testingrisk prediction modelstandard of carestemtooltreatment planningtreatment responsetreatment risktumor
项目摘要
PROJECT SUMMARY/ABSTRACT
The overall goal of this proposal is to optimize the use of radiomic and genomic data to develop biomarkers
which make clinical predictions that change cancer patient management. While the need for such predictive
biomarkers is evident across cancer types, we focus our proposal on the particularly prevalent and damaging
condition of recurrent, locally-advanced cervical cancer (LACC). Cervical cancer remains the third most
common cancer diagnosis of women, and treatment failure for locally-advanced disease is 30-50% following
chemoradiation therapy. There is a pressing need to identify patients at risk for treatment failure to allow for
personalized treatment including modified chemoradiation regimens, early escalation of therapy, and clinical
trial enrollment. To develop radiogenomic biomarkers for LACC recurrence, this proposal addresses three
outstanding methodological needs: limited availability of gene expression data for cancer subtypes, noisy and
redundant imaging feature data, and lack of disease-informed, interpretable -omics integration, each
addressed in its own specific aim. Aim 1 will use generative adversarial networks (GAN) to augment the small
gene expression datasets for all high-risk HPV subtypes. Aim 2 will optimize imaging feature selection using a
deep convolutional autoencoder (CAE). Aim 3 will integrate radiogenomic features through a structural
equation modeling (SEM) approach incorporating HPV-specific oncogenic mechanisms as latent variables.
Together, we expect fulfillment of these aims will create an optimized recurrence biomarker which will out-
perform other prediction modalities as well as standard-of-care follow-up imaging. Beyond the specific
application to HPV-driven malignancies, our proposal will generate novel tools and methods to integrate any
high-dimensional radiogenomic data with hypothesis-driven research findings to improve cancer prediction.
项目摘要/摘要
这项提案的总体目标是优化放射和基因组数据的使用,以开发生物标志物。
它做出的临床预测改变了癌症患者的管理。虽然需要这样的预测性
生物标记物在癌症类型中是显而易见的,我们将重点放在特别普遍和具有破坏性的
复发的局部晚期宫颈癌(LACC)的状况。宫颈癌仍排在第三位
女性的常见癌症诊断和局部晚期疾病的治疗失败以下为30-50%
放化疗。迫切需要确定有治疗失败风险的患者
个体化治疗,包括改良的放化疗方案、早期升级治疗和临床
试行招生。为了开发LACC复发的放射基因组生物标记物,这项建议涉及三个
突出的方法学需求:癌症亚型的基因表达数据有限,噪声和
冗余的成像特征数据,以及缺乏了解疾病、可解释的组学集成
在它自己的具体目标中解决。目标1将使用生成性对抗网络(GAN)来增强小的
所有高危HPV亚型的基因表达数据集。AIM 2将使用
深度卷积自动编码器(CAE)。目标3将通过结构上的
将HPV特异性致癌机制作为潜在变量的方程建模方法。
我们预计,这些目标的实现将创造一个优化的复发生物标记物,它将超越-
执行其他预测模式以及标准护理后续成像。超越具体的
应用于HPV驱动的恶性肿瘤,我们的建议将产生新的工具和方法来集成任何
高维放射基因组数据与假说驱动的研究结果,以改善癌症预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Zhang其他文献
Jin Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Zhang', 18)}}的其他基金
Integrating multi-omics, imaging, and longitudinal data to predict radiation response in cervical cancer
整合多组学、成像和纵向数据来预测宫颈癌的放射反应
- 批准号:
10734702 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
HPV genomic structure in cervical cancer radiation response and recurrence detection
HPV基因组结构在宫颈癌放射反应和复发检测中的作用
- 批准号:
10634999 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Deep learning in cervical cancer radiogenomics
宫颈癌放射基因组学中的深度学习
- 批准号:
10643978 - 财政年份:2022
- 资助金额:
$ 22.09万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
10308435 - 财政年份:2020
- 资助金额:
$ 22.09万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
9891761 - 财政年份:2020
- 资助金额:
$ 22.09万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
10523104 - 财政年份:2020
- 资助金额:
$ 22.09万 - 项目类别:
FASEB SRC on Protein Kinases and Protein Phosphorylation
FASEB SRC 关于蛋白激酶和蛋白磷酸化
- 批准号:
9754337 - 财政年份:2019
- 资助金额:
$ 22.09万 - 项目类别:
Signal Transduction by PI3K/Akt/mTOR Pathway
通过 PI3K/Akt/mTOR 途径进行信号转导
- 批准号:
9108384 - 财政年份:2015
- 资助金额:
$ 22.09万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别: