Live-cell Activity Architecture in Cancer
癌症中的活细胞活性结构
基本信息
- 批准号:10673027
- 负责人:
- 金额:$ 92.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2029-07-31
- 项目状态:未结题
- 来源:
- 关键词:ApoptosisArchitectureAutomobile DrivingBiochemicalBiochemistryBiological AssayBiosensorBuffersCell ProliferationCellsCessation of lifeCyclic AMPCyclic AMP-Dependent Protein KinasesDevelopmentFibrolamellar Hepatocellular CarcinomaGoalsImageImaging technologyLaboratoriesLengthLiquid substanceMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMolecularMusOncogenicPathway interactionsPeer ReviewPhasePhosphotransferasesPhysical condensationPhysiologicalProtein SubunitsPublishingRas InhibitorRegulationResearchResearch SupportSecond Messenger SystemsSignal TransductionSignaling MoleculeSuicideTechnologyTherapeuticanticancer researchawakecancer cellcell growthcell growth regulationcell transformationhigh resolution imaginginnovative technologiesnovelnovel therapeuticsprogramsprotein protein interactionspatiotemporaltumor growthtumorigenesisultra high resolutionuncontrolled cell growth
项目摘要
Project summary:
Essential regulation of the cellular machinery is achieved by a network of highly dynamic signaling
molecules, which, when dysregulated, allow cancer cells to misinterpret or ignore signals that normally tell cells
to stop dividing or begin apoptosis, leading to uncontrolled tumor growth. For the last 18 years, my laboratory
has been at the forefront of applying a native biochemistry approach to cell signaling and cancer research. We
have developed enabling technologies, and established spatiotemporal regulation as a fundamental paradigm
in cell signaling, and discovered that its alteration leads to uncontrolled cell growth.
This NCI R35-supported research program seeks to establish a new conceptual framework to
specifically understand the cellular organization of molecular activities. We hypothesize that cellular
biochemical activities are spatially organized into an “activity architecture” and dysregulated driver molecules
can re-organize and re-structure this activity architecture, leading to loss of control over cell growth, division
and death. In the past 6 years, we published 51 peer-reviewed articles, and made significant advances in
establishing this framework. We developed first-in-class technologies for imaging protein-protein interactions
and enzymatic activities in living cells at molecular length-scales and first kinase biosensor that achieved high-
resolution imaging in awake mice, which have provided evidence for the biochemical activity architecture
across different scales. We also made a breakthrough discovery that a regulatory subunit of Protein Kinase A
(PKA), RIα, undergoes liquid-liquid phase-separation (LLPS) to enable the dynamic buffering and spatial
compartmentalization of a ubiquitous second messenger, cAMP, providing an answer to a long standing
question. We further showed that the oncogenic fusion in fibrolamellar carcinoma (FLC) potently inhibits RIα
LLPS and induces aberrant cAMP signaling, which leads to increased cell proliferation and cell transformation.
We have also discovered novel regulation in the Ras/ERK pathway and developed a novel Ras biosensor. In
the proposed research, we will have three focuses. First, we will develop innovative technologies including
super-resolution activity imaging to illuminate the biochemical activity architecture across different scales.
Secondly, we will elucidate how the disorganized cAMP-PKA activity architecture leads to tumorigenesis in
FLC, and further discover novel, cancer-relevant biomolecular condensates. Thirdly, we will investigate the
spatiotemporal regulation of ERK that is critical for its physiological functions and identify the vulnerable
connections in the re-organized cancer-driving architecture in pancreatic cancer, which is a deadly cancer that
is addicted to the Ras-ERK pathway. We will also facilitate the development of new therapeutics by developing
novel assays for evaluating Ras inhibitors and measuring target engagement.
项目概要:
细胞机械的基本调节是通过高度动态的信号网络来实现的
分子,当失调时,允许癌细胞误解或忽略通常告诉细胞的信号,
停止分裂或开始凋亡,导致不受控制的肿瘤生长。在过去的18年里,我的实验室
一直处于将天然生物化学方法应用于细胞信号传导和癌症研究的最前沿。我们
已经开发了使能技术,并将时空监管确立为基本范例
在细胞信号传导中,发现它的改变导致细胞生长失控。
这项由NCI R35支持的研究计划旨在建立一个新的概念框架,
具体了解分子活动的细胞组织。我们假设细胞
生化活动在空间上被组织成“活动结构”和失调的驱动分子
可以重新组织和重新构建这种活动架构,导致失去对细胞生长,分裂,
与死在过去的6年里,我们发表了51篇同行评议的文章,并在以下方面取得了重大进展:
建立这个框架。我们开发了一流的蛋白质相互作用成像技术
以及在分子长度尺度上的活细胞中的酶活性和第一个激酶生物传感器,
清醒小鼠的分辨率成像,这为生物化学活动结构提供了证据
在不同的尺度上。我们还取得了突破性的发现,蛋白激酶A的调节亚基
(PKA),RIα,经历液-液相分离(LLPS)以使动态缓冲和空间分离成为可能。
普遍存在的第二信使cAMP的区室化,为长期存在的
问题我们进一步发现,纤维板层癌(FLC)中的致癌融合可有效抑制RIα,
LLPS并诱导异常cAMP信号传导,这导致细胞增殖和细胞转化增加。
我们还发现了Ras/ERK通路的新调控机制,并开发了一种新型Ras生物传感器。在
建议的研究,我们将有三个重点。首先,我们会发展创新科技,包括
超分辨率活动成像,以照亮不同尺度的生化活动架构。
其次,我们将阐明cAMP-PKA活性结构紊乱是如何导致肿瘤发生的。
FLC,并进一步发现新的,癌症相关的生物分子缩合物。第三,我们将调查
ERK的时空调节,这是至关重要的生理功能,并确定脆弱的
胰腺癌是一种致命的癌症,
对Ras-ERK通路上瘾我们还将促进新疗法的开发,
用于评估Ras抑制剂和测量靶接合的新测定。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice.
- DOI:10.1038/s41589-020-00660-y
- 发表时间:2021-01
- 期刊:
- 影响因子:14.8
- 作者:Zhang JF;Liu B;Hong I;Mo A;Roth RH;Tenner B;Lin W;Zhang JZ;Molina RS;Drobizhev M;Hughes TE;Tian L;Huganir RL;Mehta S;Zhang J
- 通讯作者:Zhang J
Fourier Optical Spin Splitting Microscopy.
- DOI:10.1103/physrevlett.129.020801
- 发表时间:2022-07
- 期刊:
- 影响因子:8.6
- 作者:Junxiao Zhou;Qianyi Wu;Junxiang Zhao;Clara Posner;M. Lei;Guanghao Chen;Jin Zhang;Zhaowei Liu
- 通讯作者:Junxiao Zhou;Qianyi Wu;Junxiang Zhao;Clara Posner;M. Lei;Guanghao Chen;Jin Zhang;Zhaowei Liu
Observing the Assembly of Protein Complexes in Living Eukaryotic Cells in Super-Resolution Using refSOFI.
使用 refSOFI 在超分辨率下观察活体真核细胞中蛋白质复合物的组装。
- DOI:10.1007/978-1-4939-7759-8_16
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hertel,Fabian;Mo,GaryCH;Dedecker,Peter;Zhang,Jin
- 通讯作者:Zhang,Jin
RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells.
- DOI:10.1016/j.celrep.2015.12.036
- 发表时间:2016-01-12
- 期刊:
- 影响因子:8.8
- 作者:Hertel F;Mo GC;Duwé S;Dedecker P;Zhang J
- 通讯作者:Zhang J
Illuminating the Cell's Biochemical Activity Architecture.
- DOI:10.1021/acs.biochem.7b00561
- 发表时间:2017-10-03
- 期刊:
- 影响因子:2.9
- 作者:Mehta S;Zhang J
- 通讯作者:Zhang J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Zhang其他文献
Jin Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Zhang', 18)}}的其他基金
Integrating multi-omics, imaging, and longitudinal data to predict radiation response in cervical cancer
整合多组学、成像和纵向数据来预测宫颈癌的放射反应
- 批准号:
10734702 - 财政年份:2023
- 资助金额:
$ 92.9万 - 项目类别:
HPV genomic structure in cervical cancer radiation response and recurrence detection
HPV基因组结构在宫颈癌放射反应和复发检测中的作用
- 批准号:
10634999 - 财政年份:2023
- 资助金额:
$ 92.9万 - 项目类别:
Deep learning in cervical cancer radiogenomics
宫颈癌放射基因组学中的深度学习
- 批准号:
10643978 - 财政年份:2022
- 资助金额:
$ 92.9万 - 项目类别:
Deep learning in cervical cancer radiogenomics
宫颈癌放射基因组学中的深度学习
- 批准号:
10424854 - 财政年份:2022
- 资助金额:
$ 92.9万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
10308435 - 财政年份:2020
- 资助金额:
$ 92.9万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
9891761 - 财政年份:2020
- 资助金额:
$ 92.9万 - 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
- 批准号:
10523104 - 财政年份:2020
- 资助金额:
$ 92.9万 - 项目类别:
FASEB SRC on Protein Kinases and Protein Phosphorylation
FASEB SRC 关于蛋白激酶和蛋白磷酸化
- 批准号:
9754337 - 财政年份:2019
- 资助金额:
$ 92.9万 - 项目类别:
Signal Transduction by PI3K/Akt/mTOR Pathway
通过 PI3K/Akt/mTOR 途径进行信号转导
- 批准号:
9108384 - 财政年份:2015
- 资助金额:
$ 92.9万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 92.9万 - 项目类别:
Standard Grant














{{item.name}}会员




