Open-source computational modeling of Spinal Cord Stimulation (SCS) to enhance dissemination of 1R01NS112996
脊髓刺激 (SCS) 的开源计算模型可增强 1R01NS112996 的传播
基本信息
- 批准号:10413556
- 负责人:
- 金额:$ 31.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAbsence of pain sensationAction PotentialsAcuteAddressAnatomyAnimal Disease ModelsArchitectureAwardBRAIN initiativeBiophysical ProcessBlood flowBrainCell modelClinicalClinical TrialsComputer ModelsConvectionCoupledCouplesCouplingCustomDataDependenceDevelopmentDevice DesignsDevicesDisease modelDorsalDoseElectric StimulationElectrophysiology (science)FDA approvedFamily suidaeFoundationsFrequenciesGoalsHeatingHumanHydrogelsImplantInterneuronsLeadMasksMeasurementMembraneMetabolismMeteorMethodsMissionModalityModelingMoldsNeurobiologyNeuronsNeurostimulation procedures of spinal cord tissuePain managementParentsParesthesiaPatientsPerfusionPharmaceutical PreparationsPhysicsPhysiologic pulseProceduresPropertyPublic HealthResearchResolutionResourcesSpatial DistributionSpinalSpinal CanalSpinal CordSystemTechniquesTechnologyTemperatureTestingTimeTissuesValidationVertebral columnWidthWorkbasebiophysical modelchronic painclinical efficacyclinically relevantcomputational network modelingcomputerized toolsdesigndorsal hornelectric fieldimprovedin vivoin vivo Modelinnovationnetwork modelsneural stimulationneuromechanismneuroregulationnext generationnovelopen sourceopioid epidemicpain processingpain reliefpain signalporcine modelpredictive modelingpredictive toolspressureproduct developmentresponsesafety testingsensorside effectspatiotemporaltheoriestool
项目摘要
Project Summary / Abstract (unchanged from original proposal, except supplement in red)
There is a need to understand the mechanisms of neural stimulation technologies (RFA-NS-18-018). The impact
of such research increases with both the clinical relevance of a neuromodulation technology and the extent
mechanisms are unknown. Spinal Cord Stimulation at kHz frequencies (kHz SCS) has undergone a meteoric
clinical and market rise, in the absence of an accepted mechanistic hypothesis. The most peculiar feature of kHz
SCS mechanistically is that rapid biphasic stimulation undermines traditional mechanisms of electrical
stimulation. But, we note this same feature of rapid pulsing results in high stimulation power leading to our
hypothesis that kHz SCS increases tissue temperature. Our proposal that a clinically-established implanted
electrical stimulation device would unexpectantly function by joule heating is disruptive and innovative and so
requires, as the first step, to establish the degree of temperature increase during kHz SCS. To this end, our
research plan develops state-of-the-art tools for multi-physics bioheat modeling (Aim 1), multi-compartment 3D-
lattice phantom verification (Aim 2), and validation in a swine model (Aim 3) to methodically test the hypothesis
that kHz SCS produces a 0.5-2 oC temperature rise. The multi-physics model (Aim 1) will be state-of-the-at in
anatomical resolution, internal lead architecture, and the first to couple joule heat, heat conduction and
convection (CSF flow), metabolism, and blood flow perfusion. The heat phantom (Aim 2) will be the first for spinal
cord stimulation based on novel 3D-lattice printed compartments. The swine model (Aim 3) is selected for
anatomical similarities to the human spinal cord and vertebral canal, and will include a custom fabricated
combination lead/sensor array for in vivo temperature mapping. The most peculiar clinical feature of kHz SCS is
lack of paresthesia, associated with conventional SCS. We will develop a dorsal horn network model of heating-
based analgesia (Aim 4) by integrating experimentally validated temperature increases, pain processing network
dynamics, and membrane sensitivity to temperature (Q10). We hypothesize a 0.5-2 0C temperature rise
generates pain relief through the same final MoA as conventional SCS (gate-control) but without pacing
associated paresthesia. While device design, disease models, and clinical trials are explicitly outside RFA scope,
establishing a novel MoA and state-of-the-art tools developed in each Aim implicitly drive and underpin such
developments. Directly RFA responsive, we “improve understanding of the neurobiological underpinnings of
existing methods and lay the foundation for the next generation technologies by developing models (Aim 1, 4),
systems (Aim 2), and procedures (Aim 3) to guide the design of better neuromodulation tools”. Indeed, because
the heating MoA is fundamentally innovative, new tools are needed. Responsive to NOT-NS-21-014, this
supplement enhances within-scope resource dissemination of the awarded 1R01NS112996 parent award by
developing an open-source SCS modeling tool that predicts current flow and heating.
项目摘要/摘要(与原始提案相同,但红色补充除外)
需要了解神经刺激技术的机制(RFA-NS-18-018)。的影响
这种研究的增加与神经调节技术的临床相关性和程度
机制不明。kHz频率下的脊髓刺激(kHz SCS)经历了一个短暂的
临床和市场的崛起,在没有一个公认的机制假说。kHz的最大特点
SCS的机制是快速双相刺激破坏了电刺激的传统机制,
刺激.但是,我们注意到快速脉冲的这种相同特征导致高刺激功率,
假设kHz SCS会增加组织温度。我们的建议是,一个临床上建立的植入
电刺激装置将通过焦耳加热意外地起作用是破坏性的和创新的,
作为第一步,需要确定kHz SCS期间的温度升高程度。为此,我们
研究计划开发最先进的工具,用于多物理场生物热建模(目标1),多室3D-
点阵体模验证(目标2)和猪模型中的验证(目标3),以系统地检验假设
kHz SCS产生0.5-2 oC的温升。多物理场模型(Aim 1)将在
解剖分辨率,内部导线结构,以及第一个耦合焦耳热,热传导和
对流(CSF流动)、代谢和血流灌注。加热体模(Aim 2)将是脊柱的第一个
基于新型3D点阵打印隔室的脊髓刺激。选择猪模型(目标3)用于
解剖学上与人类脊髓和椎管相似,并将包括定制的
用于体内温度标测的组合导线/传感器阵列。kHz SCS最独特的临床特征是
缺乏与传统SCS相关的感觉异常。我们将建立一个背角加热网络模型-
通过整合实验验证的温度升高、疼痛处理网络
动力学和膜对温度的敏感性(Q10)。我们假设温度上升0.5-2摄氏度
通过与传统SCS(门控)相同的最终MoA缓解疼痛,但无起搏
相关感觉异常虽然器械设计、疾病模型和临床试验明确不在RFA范围内,
建立一个新的MoA和在每个Aim中开发的最先进的工具隐含地推动和支持这样的目标,
发展理念直接RFA反应,我们“提高了对神经生物学基础的理解,
现有的方法,并通过开发模型为下一代技术奠定基础(目标1,4),
系统(目标2)和程序(目标3),以指导更好的神经调节工具的设计”。的确,因为
加热MoA从根本上是创新的,需要新的工具。根据NOT-NS-21-014,
补充加强范围内的资源传播授予1 R 01 NS 112996家长奖,通过
开发一个开源的SCS建模工具,预测电流和加热。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAROM BIKSON其他文献
MAROM BIKSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAROM BIKSON', 18)}}的其他基金
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10462520 - 财政年份:2020
- 资助金额:
$ 31.4万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10689071 - 财政年份:2020
- 资助金额:
$ 31.4万 - 项目类别:
kHz frequency Spinal Cord Stimulation: Novel Temperature-Based Mechanisms of Action
kHz 频率脊髓刺激:基于温度的新型作用机制
- 批准号:
10709773 - 财政年份:2020
- 资助金额:
$ 31.4万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10024978 - 财政年份:2020
- 资助金额:
$ 31.4万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10220083 - 财政年份:2020
- 资助金额:
$ 31.4万 - 项目类别:
The coupled vascular hypothesis for transcranial direct current stimulation (tDCS)
经颅直流电刺激 (tDCS) 的耦合血管假说
- 批准号:
9891113 - 财政年份:2017
- 资助金额:
$ 31.4万 - 项目类别:
A tool-box to control and enhance tDCS spatial precision
控制和增强 tDCS 空间精度的工具箱
- 批准号:
9229408 - 财政年份:2016
- 资助金额:
$ 31.4万 - 项目类别:
A tool-box to control and enhance tDCS spatial precision
控制和增强 tDCS 空间精度的工具箱
- 批准号:
9357699 - 财政年份:2016
- 资助金额:
$ 31.4万 - 项目类别:
Modulation of blood-brain-barrier (BBB) permeability by tDCS relevant electric fi
通过 tDCS 相关电刺激调节血脑屏障 (BBB) 通透性
- 批准号:
8702690 - 财政年份:2014
- 资助金额:
$ 31.4万 - 项目类别:
Wireless Pulse Oximetry (WiPOX) for Diagnosing Intra-Operative Ischemia
用于诊断术中缺血的无线脉搏血氧仪 (WiPOX)
- 批准号:
8702683 - 财政年份:2014
- 资助金额:
$ 31.4万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 31.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 31.4万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 31.4万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 31.4万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 31.4万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 31.4万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 31.4万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 31.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 31.4万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 31.4万 - 项目类别:
Standard Grant














{{item.name}}会员




