Explainable, Fair, Reproducible and Collaborative Surgical Artificial Intelligence: Integrating data, algorithms and clinical reasoning for surgical risk assessment (XAI-IDEALIST)
可解释、公平、可重复和协作的手术人工智能:整合数据、算法和临床推理以进行手术风险评估(XAI-IDEALIST)
基本信息
- 批准号:10445486
- 负责人:
- 金额:$ 55.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAlgorithmsAmericanArtificial IntelligenceArtificial Intelligence platformBehavioralBenchmarkingBridge to Artificial IntelligenceClinicalClinical ResearchClinical TrialsCognitiveCollaborationsComplicationComputing MethodologiesCritical CareDataData PoolingData SetEarly InterventionEnvironmentEthicsEvaluationFloridaFoundationsFundingGenerationsHealthHospital CostsHospitalizationHospitalsHumanInformaticsInfrastructureInstitutionIntelligenceInvestmentsLegal patentMachine LearningMedicalMindMissionModelingOperative Surgical ProceduresPatient CarePatient-Focused OutcomesPatientsPerformancePerioperative CarePhysiciansPhysiologicalPopulation HeterogeneityPostoperative ComplicationsPrevention strategyPrivacyProcessProductivityPsyche structurePublic HealthPublicationsReproducibilityResearchRiskRisk AssessmentScienceSystemTechnologyTestingTimeTrainingTrustUnited StatesUnited States National Institutes of HealthUniversitiesValidationWorkadvanced diseaseclinical implementationcollaborative approachcomputerized toolsdata sharingdata streamsdisease diagnosisdistributed dataeffectiveness evaluationfederated learninghigh riskhuman centered computingimprovedinnovationinteroperabilitymachine learning algorithmmultimodal datamultimodalitynoveloperationpreferenceprivacy preservationprogramsprospectiveprospective testsocial health determinantssuccesssurgical risktheoriestooltrustworthinessusability
项目摘要
Project Summary
In the United States, the average American can expect to undergo seven surgical operations during a lifetime.
Each year 150,000 surgical patients die, and 1.5 million develop a complication after surgery. Progress in
medical Artificial Intelligence (AI) remains halted by limited datasets and models with insufficient interpretability,
transparency, fairness, and reproducibility that are difficult to implement and share across institutions. In the
previous funding period, in addition to 98 publications and 3 patents, a real-time intelligent surgical risk
assessment system was successfully implemented at University of Florida. The overall objective of this
renewal application is to develop a new conceptual framework for “Explainable, Fair, Reproducible, and
Collaborative Medical AI” to provide a foundation for clinical implementation at scale. It will leverage the
OneFlorida, a large clinical consortium of 22 hospitals serving 10 million patients in Florida, the nation’s third
largest state. The overall objective will be achieved by pursuing three specific aims.
(1) External and prospective validation of novel interpretable, dynamic, actionable, fair and reproducible
algorithmic toolkit for real-time surgical risk surveillance. (2) Developing and evaluating explainable AI platform
(XAI-IDEALIST) for real-time surgical risk surveillance using human-grounded benchmarks. (3) Implementing
and evaluating a federated learning approach with advanced privacy features for collaborative surgical risk
model training. The approach is innovative, because it represents the first attempt to (1) build the first surgical
FAIR (Findable, Accessible, Interoperable, Reproducible) AI-ready, large multicenter multimodal dataset, (2)
Novel computational approaches accompanied by assessing fairness and reproducibility, (3) a multifaceted
and full-stack explainable AI framework, and (4) federated learning capacity for privacy-preserving model
trainingacross institutions. The proposed research is significant since it will address several key problems and
critical barriers, including (1) lack of AI-ready large surgical datasets, (2) lack of interpretable, dynamic,
actionable, fair and reproducible surgical risk algorithms, (2) lack of a medical AI explainability platform, and (4)
lack of a systematic approach for collaborative model training and sharing across institutions. Ultimately, the
results are expected to improve patient outcomes and decrease hospitalization costs, as well as lifelong
complications.
项目摘要
在美国,平均每个美国人一生中要做七次外科手术。
每年有150,000名手术患者死亡,150万人在手术后出现并发症。进展
医疗人工智能(AI)仍然因有限的数据集和模型而停滞不前,这些数据集和模型的可解释性不足,
透明度、公平性和可重复性,这些都很难在各机构间实现和共享。在
上一个资助期,除了98篇出版物和3项专利外,还有实时智能手术风险
评估系统在佛罗里达大学成功实施。本报告的总体目标
续期申请是为了发展一个新的概念框架,以“可解释,公平,可再现,
协作医疗AI”为大规模临床实施提供基础。它将利用
一个佛罗里达,一个由22家医院组成的大型临床联盟,为全国第三大城市佛罗里达的1000万名患者提供服务。
最大的州。将通过三个具体目标实现总体目标。
(1)外部和前瞻性验证新的可解释性、动态性、可操作性、公平性和可重现性
实时手术风险监控的算法工具包。(2)开发和评估可解释的AI平台
(XAI-IDEALIST)使用基于人为的基准进行实时手术风险监测。(3)实施
并评估具有高级隐私功能的联合学习方法,以降低协作手术风险
模型训练这种方法是创新的,因为它代表了第一次尝试(1)建立第一个外科手术
FAIR(可查找、可解释、可互操作、可再现)AI就绪、大型多中心多模式数据集,(2)
新的计算方法伴随着评估公平性和可重复性,(3)多方面的
和全栈可解释的AI框架,以及(4)隐私保护模型的联邦学习能力
training训练across横过institutions机构.拟议的研究是重要的,因为它将解决几个关键问题,
关键障碍,包括(1)缺乏AI就绪的大型手术数据集,(2)缺乏可解释的,动态的,
可操作、公平和可重现的手术风险算法,(2)缺乏医疗AI可解释性平台,以及(4)
缺乏系统的方法来进行协作模式培训和机构间共享。最终
结果有望改善患者的预后,降低住院费用,
并发症
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Azra Bihorac其他文献
Azra Bihorac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Azra Bihorac', 18)}}的其他基金
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10858694 - 财政年份:2022
- 资助金额:
$ 55.49万 - 项目类别:
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10472824 - 财政年份:2022
- 资助金额:
$ 55.49万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10414976 - 财政年份:2021
- 资助金额:
$ 55.49万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10594086 - 财政年份:2021
- 资助金额:
$ 55.49万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10396041 - 财政年份:2021
- 资助金额:
$ 55.49万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10609525 - 财政年份:2021
- 资助金额:
$ 55.49万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10178157 - 财政年份:2021
- 资助金额:
$ 55.49万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10154047 - 财政年份:2021
- 资助金额:
$ 55.49万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10209005 - 财政年份:2021
- 资助金额:
$ 55.49万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10580785 - 财政年份:2021
- 资助金额:
$ 55.49万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 55.49万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 55.49万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 55.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 55.49万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 55.49万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 55.49万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 55.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 55.49万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 55.49万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 55.49万 - 项目类别:
Research Fellowships