Machine Learning to Optimize Management of Acute Hydrocephalus
机器学习优化急性脑积水的治疗
基本信息
- 批准号:10639454
- 负责人:
- 金额:$ 70.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdoptedAdoptionAdverse eventAutomated Clinical Decision SupportBloodBrainBrain InjuriesCaringCase Report FormCerebral hemisphere hemorrhageCerebrospinal FluidCerebrospinal fluid shunts procedureChronicClassificationClinicalClinical DataClinical Decision Support SystemsClosure by clampCommon Data ElementCommunitiesDangerousnessDataData ScienceData SetDecision MakingDependenceDetectionDiagnosisDrainage procedureEarly DiagnosisElectrocardiogramEquipoiseExcisionFrequenciesFutureHarvestHemorrhageHospital ChargesHydrocephalusImageInfectionInstitutionIntensive Care UnitsIntracranial PressureLength of StayMachine LearningMeasurementMethodsModelingMorbidity - disease rateMorphologyOutcomeOutputPatientsPatternPersonsPhysiciansPhysiologicalProcessReadinessResearchRiskSamplingShunt DeviceSiteStructureSubarachnoid HemorrhageSurveysTestingTrainingTranslatingValidationVentricularWeaningWorkaccurate diagnosisclinical diagnosiscostcraniumdiverse datafederated learninghigh riskimprovedimproved outcomeinfection riskintraventricular hemorrhagelarge datasetsmachine learning classifiermachine learning modelmortalityopen datapressureprospectiveprospective testradiological imagingtool
项目摘要
Project Summary/Abstract
Acute hydrocephalus frequently complicates brain injury including intracerebral (ICH) and subarachnoid
hemorrhage (SAH), requiring emergent placement of an external ventricular drain (EVD). The EVD allows rapidly
accumulated blood to exit, immediately relieving dangerous increased pressure on the brain. Most patients do
not need the EVD after this, while 18-30% develop chronic hydrocephalus and require permanent cerebrospinal
fluid (CSF) shunt placement. There is great variability in the management of EVDs across centers, particularly
about when to wean EVDs and the approach to surveying and diagnosing EVD-related infection. The longer the
EVD is present and the more frequently the EVD is accessed to sample CSF (to test infection), the higher the risk
for infection which contributes to high morbidity and mortality. SAH and ICH patients endure EVDs for 11.5-16
days (max > 30), with typical ventriculitis onset occurring at 9.5 days. This vicious cycle is hidden in the cost:
37,000 patients a year receive an EVD in the setting of acute hydrocephalus in the US annually, generating in-
hospital charges of $151,672 per patient, or $5.6 billion dollars a year. There is a great need to optimize EVD
management by recognizing EVD-related infection while reducing CSF sampling and accurately determining
need for permanent shunting (or ability to liberate from temporary drainage), and to do so as early as possible
to minimize duration of drainage and length of stay. Our central hypothesis is that there is temporal information
in digitized patient data that is reflective of intracranial dynamics that can be harvested to break the negative
cycle of ventriculitis and shunt dependency. In previous work, we discovered that intracranial pressure waveform
morphology changes two days prior to the clinical diagnosis of ventriculitis. Additionally, we identified a predictor
of future CSF shunt dependency as early as four days after EVD placement, building on the correlation of
radiographic hydrocephalus changes with concurrent CSF drainage volume. We aim to develop a multicenter
purpose-built dataset for the management of acute hydrocephalus including physiologic data such as intracranial
pressure waveform, imaging, and clinical data. Using this dataset, we will be able to improve and validate our
machine learning models for detection of ventriculitis and prediction of shunt dependence. We will leverage the
diversity of the data inputs for model generalizability while also identifying and reducing bias by using a
Federated Learning framework for model training and validation. Finally, we will survey physicians to evaluate
decision making around EVD management and assess openness to adopting computed prediction scores.
项目摘要/摘要
急性脑积水经常使包括脑内(ICH)和蛛网膜下腔的脑损伤复杂化
出血(SAH),需要突发放置外部心室漏极(EVD)。 EVD允许迅速
积累血液以退出,立即减轻危险的大脑压力。大多数患者都这样做
此后不需要EVD,而18-30%的人会发展出慢性脑积水,需要永久性大脑
流体(CSF)分流放置。整个中心的EVD管理有很大的差异,特别是
关于何时断奶EVD以及测量和诊断与EVD相关的感染的方法。越长
EVD存在,EVD访问样本CSF(测试感染)的频率越高,风险越高
对于有助于高发病率和死亡率的感染。 SAH和ICH患者忍受11.5-16的EVD
天(最大> 30),典型的心室发作发生在9.5天。这个恶性循环的成本隐藏了:
每年在美国,每年37,000名患者在美国的急性脑积水中获得EVD,从而产生内部
医院费用为每位患者151,672美元,每年56亿美元。非常需要优化EVD
通过识别与EVD相关的感染的管理,同时还要减少CSF采样并准确确定
需要永久分类(或从临时排水中解放的能力),并尽早这样做
为了最大程度地减少排水持续时间和住宿时间。我们的中心假设是有时间信息
在数字化的患者数据中,反映了颅内动力学,可以收获以破坏阴性
心室炎和分流依赖性的循环。在以前的工作中,我们发现颅内压波形
形态学在临床诊断心室炎前两天变化。此外,我们确定了一个预测指标
EVD放置后四天,未来的CSF分流依赖
射线照相型脑积水随并发的CSF引流量变化。我们旨在发展一个多中心
用于管理急性脑积水的专用数据集,包括生理数据,例如颅内
压力波形,成像和临床数据。使用此数据集,我们将能够改进和验证我们的
用于检测心室炎和分流依赖性预测的机器学习模型。我们将利用
模型概括性的数据输入的多样性,同时还通过使用A来识别和减少偏差
用于模型培训和验证的联合学习框架。最后,我们将调查医生评估
围绕EVD管理的决策并评估采用计算预测分数的开放性。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heart rate and heart rate variability as a prognosticating feature for functional outcome after cardiac arrest: A scoping review.
- DOI:10.1016/j.resplu.2023.100450
- 发表时间:2023-09
- 期刊:
- 影响因子:2.4
- 作者:Kwon, Soon Bin;Megjhani, Murad;Nametz, Daniel;Agarwal, Sachin;Park, Soojin
- 通讯作者:Park, Soojin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soojin Park其他文献
Soojin Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soojin Park', 18)}}的其他基金
ContinuOuS Monitoring Tool for Delayed Cerebral IsChemia (COSMIC)
迟发性脑缺血持续监测工具 (COSMIC)
- 批准号:
10736589 - 财政年份:2023
- 资助金额:
$ 70.6万 - 项目类别:
Machine Learning to Optimize Management of Acute Hydrocephalus Patients
机器学习优化急性脑积水患者的管理
- 批准号:
10057040 - 财政年份:2020
- 资助金额:
$ 70.6万 - 项目类别:
Neural representation of the geometry and functionality in a scene
场景中几何形状和功能的神经表示
- 批准号:
9006938 - 财政年份:2016
- 资助金额:
$ 70.6万 - 项目类别:
Neural representation of the geometry and functionality in a scene
场景中几何形状和功能的神经表示
- 批准号:
9245696 - 财政年份:2016
- 资助金额:
$ 70.6万 - 项目类别:
Multiparametric Prediction of Vasospasm after Subarachnoid Hemorrhage
蛛网膜下腔出血后血管痉挛的多参数预测
- 批准号:
9044336 - 财政年份:2015
- 资助金额:
$ 70.6万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 70.6万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 70.6万 - 项目类别:
mHealth OAE: Towards Universal Newborn Hearing Screening in Kenya (mTUNE)
mHealth OAE:迈向肯尼亚全民新生儿听力筛查 (mTUNE)
- 批准号:
10738905 - 财政年份:2023
- 资助金额:
$ 70.6万 - 项目类别: