Machine Learning to Optimize Management of Acute Hydrocephalus Patients

机器学习优化急性脑积水患者的管理

基本信息

  • 批准号:
    10057040
  • 负责人:
  • 金额:
    $ 44.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

37,000 patients a year receive an external ventricular drain (EVD) in the setting of acute hydrocephalus in the US, generating in-hospital charges of $151,672 per patient, or $5.6 billion dollars a year. There is great motivation in the neurointensive care unit for the optimization of EVD management to reduce infection rates, accurately determine need for permanent shunting, and to do so efficiently in order to minimize duration of drainage and length of stay (LOS). Risk factors for ventriculitis include EVD duration, cerebrospinal fluid (CSF) sampling frequency, presence of intraventricular hemorrhage (IVH), and insertion technique. Severe CSF disturbances in patients with IVH and EVDs limit the value of routine CSF analysis for ventriculitis prediction. And ventriculitis diagnosis is imprecise, with only a minority declaring culture positivity while all still demanding antibiotic treatment and delay of permanent shunt. This leads to unnecessary empiric antibiotic treatment and increased LOS (30.8 vs 22.6 days), with the associated cost ($30,335 more) and morbidity (e.g. Clostridium difficile infection, emergence of drug-resistant pathology). The process of determining permanent shunt dependence is variable between institutions, particularly around the decision of when to begin weaning the EVD or predicting delayed resolution. These decisions in the subacute period determine LOS and associated adverse events, exposure to radiography, and commitment to potentially unnecessary permanent foreign materials in the CNS, which then carry lifelong risks for infection and blockage. There is no accurate noninvasive test (that does not further introduce infection) to diagnose ventriculitis nor is there a timely method to predict need for permanent shunt after acute hydrocephalus. To fill this gap, we propose developing a quantitative model from intracranial pressure (ICP) waveform analysis to increase precision in the diagnosis of ventriculitis and accurately predict need for permanent shunt. In previous work, we were able to predict with good accuracy who would need permanent shunt placement using ICP waveform analysis collected during a 24 hour clamp trial. However, a complex model can only be justified if it achieves a diagnosis earlier or more accurately than traditional clinical methods. In preliminary work, we clustered raw ICP waveforms and found a pattern of waveforms specific for ventriculitis that appears 1 day before diagnostic cultures are sent. Our central hypothesis is that there is a temporal quantitative signal in ICP waveform reflective of intracranial dynamics that can be harvested to optimize acute hydrocephalus management. Impact and Significance: Noninvasive quantitative models based on ICP waveform analysis that diagnose ventriculitis and accurately predict need for permanent shunt would decrease the duration of EVD and the frequency of CSF sampling, two of the risk factors for ventriculitis, while also decreasing LOS, associated adverse events of ICU stay, and empiric antibiotics.
每年有37,000名患者在急性脑积水的情况下接受脑室体外引流(EVD), 在美国,每位患者的住院费用为151,672美元,即每年56亿美元。有很大 神经重症监护病房优化EVD管理以降低感染率的动机, 准确地确定永久分流的需要,并有效地这样做,以最大限度地减少 引流和住院时间(LOS)。脑室炎的风险因素包括EVD持续时间、脑脊液 (CSF)采样频率、是否存在脑室内出血(IVH)和插入技术。严重 IVH和EVD患者的CSF紊乱限制了常规CSF分析对脑室炎的价值 预测.脑室炎的诊断是不准确的,只有少数人宣布文化阳性,而所有仍然 需要抗生素治疗和永久性分流的延迟。这导致不必要的经验性抗生素 治疗和增加的LOS(30.8 vs 22.6天),相关费用(30,335美元以上)和发病率 (e.g.艰难梭菌感染,出现耐药病理)。的确定过程 永久性分流依赖在机构之间是可变的,特别是在决定何时 开始撤机EVD或预测延迟消退。亚急性期的这些决定决定 LOS和相关不良事件、放射学暴露以及可能不必要的 CNS中的永久性异物,从而带来感染和堵塞的终身风险。有 没有准确的非侵入性测试(不会进一步引入感染)来诊断脑室炎, 是否有一种及时的方法来预测急性脑积水后是否需要永久性分流。填补这一 间隙,我们建议开发一个定量模型,从颅内压(ICP)波形分析, 提高脑室炎诊断的精确度,并准确预测是否需要永久性分流。在 在以前的工作中,我们能够很准确地预测谁需要永久性分流安置 使用在24小时钳夹试验期间收集的ICP波形分析。然而,一个复杂的模型只能 如果它比传统的临床方法更早或更准确地实现诊断,则是合理的。初步 工作中,我们聚集了原始ICP波形,并发现了一种特定于脑室炎的波形模式, 在发送诊断培养物前1天出现。我们的中心假设是, 反映颅内动力学的ICP波形中的定量信号,可采集以优化急性 脑积水管理。影响和意义:基于ICP的无创定量模型 诊断脑室炎并准确预测永久性分流需要波形分析 减少EVD的持续时间和CSF采样的频率,这是脑室炎的两个风险因素, 同时也减少了LOS、ICU住院相关不良事件和经验性抗生素。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Cerebral Perfusion Pressure During Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage.
动脉瘤性蛛网膜下腔出血后迟发性脑缺血期间的最佳脑灌注压。
  • DOI:
    10.1097/ccm.0000000000005396
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Weiss,Miriam;Albanna,Walid;Conzen,Catharina;Megjhani,Murad;Tas,Jeanette;Seyfried,Katharina;Kastenholz,Nick;Veldeman,Michael;Schmidt,TobiasPhilip;Schulze-Steinen,Henna;Wiesmann,Martin;Clusmann,Hans;Park,Soojin;Aries,Marcel;Schu
  • 通讯作者:
    Schu
Predicting Shunt Dependency from the Effect of Cerebrospinal Fluid Drainage on Ventricular Size.
  • DOI:
    10.1007/s12028-022-01538-8
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
  • 通讯作者:
Cognitive-motor dissociation and time to functional recovery in patients with acute brain injury in the USA: a prospective observational cohort study.
  • DOI:
    10.1016/s1474-4422(22)00212-5
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Egbebike, Jennifer;Shen, Qi;Doyle, Kevin;Der-Nigoghossian, Caroline A.;Panicker, Lucy;Gonzales, Ian Jerome;Grobois, Lauren;Carmona, Jerina C.;Vrosgou, Athina;Kaur, Arshnell;Boehme, Amelia;Velazquez, Angela;Rohaut, Benjamin;Roh, David;Agarwal, Sachin;Park, Soojin;Connolly, E. Sander;Claassen, Jan
  • 通讯作者:
    Claassen, Jan
Artificial Intelligence and Big Data Science in Neurocritical Care.
神经重症监护中的人工智能和大数据科学。
  • DOI:
    10.1016/j.ccc.2022.07.008
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Mainali,Shraddha;Park,Soojin
  • 通讯作者:
    Park,Soojin
Convexity subarachnoid haemorrhage - Authors' reply.
凸性蛛网膜下腔出血 - 作者的回复。
  • DOI:
    10.1016/s0140-6736(23)00007-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claassen,Jan;Park,Soojin
  • 通讯作者:
    Park,Soojin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soojin Park其他文献

Soojin Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soojin Park', 18)}}的其他基金

ContinuOuS Monitoring Tool for Delayed Cerebral IsChemia (COSMIC)
迟发性脑缺血持续监测工具 (COSMIC)
  • 批准号:
    10736589
  • 财政年份:
    2023
  • 资助金额:
    $ 44.55万
  • 项目类别:
Machine Learning to Optimize Management of Acute Hydrocephalus
机器学习优化急性脑积水的治疗
  • 批准号:
    10639454
  • 财政年份:
    2023
  • 资助金额:
    $ 44.55万
  • 项目类别:
Neural representation of the geometry and functionality in a scene
场景中几何形状和功能的神经表示
  • 批准号:
    9006938
  • 财政年份:
    2016
  • 资助金额:
    $ 44.55万
  • 项目类别:
Neural representation of the geometry and functionality in a scene
场景中几何形状和功能的神经表示
  • 批准号:
    9245696
  • 财政年份:
    2016
  • 资助金额:
    $ 44.55万
  • 项目类别:
Multiparametric Prediction of Vasospasm after Subarachnoid Hemorrhage
蛛网膜下腔出血后血管痉挛的多参数预测
  • 批准号:
    9044336
  • 财政年份:
    2015
  • 资助金额:
    $ 44.55万
  • 项目类别:

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 44.55万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 44.55万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 44.55万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 44.55万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 44.55万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 44.55万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 44.55万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 44.55万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 44.55万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 44.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了