ContinuOuS Monitoring Tool for Delayed Cerebral IsChemia (COSMIC)
迟发性脑缺血持续监测工具 (COSMIC)
基本信息
- 批准号:10736589
- 负责人:
- 金额:$ 63.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAge of OnsetAlgorithmsAmericanAneurysmal Subarachnoid HemorrhagesArchitectureArtificial IntelligenceAuthorization documentationBig Data to KnowledgeBiological AvailabilityBrainBrain InjuriesCerebral IschemiaClassificationClinicalClinical TrialsCodeCollaborationsCommunitiesCustomDataDecision MakingDeliriumDevicesDiagnosisDiagnostic testsEnsureEthicsEvaluationFast Healthcare Interoperability ResourcesFutureGenerationsHealthcareHeartHemorrhageHospitalizationHospitalsHourInflammatoryInformaticsInstitutionIntensive Care UnitsInterventionLaboratoriesLifeMethodologyModelingMonitorMorbidity - disease rateNatureNervous System TraumaObservational StudyOutcomePatient CarePatient-Focused OutcomesPatientsPerformancePersonsPhysiologicalPhysiologyPlayProbabilityProceduresProductionProductivityResearch DesignResourcesRiskRisk AssessmentRuptured AneurysmSafetySeizuresSignal TransductionSigns and SymptomsSiteSpecialistStrokeStroke preventionSubarachnoid HemorrhageSymptomsSyndromeTechnologyTestingTimeTranslatingTranslationsTrustUnited States National Institutes of HealthUpdateValidationVirginiaWorld Health Organizationaggressive therapyauthorityclinical decision supportclinical diagnosisclinical practiceclinical riskcomputer human interactiondesigndiagnostic strategydisabilityeffectiveness studyeffectiveness testingexperimental studyhealth information technologyimprovedindividual patientinnovationinteroperabilityiterative designloss of functionmachine learning modelmultidisciplinarynew technologynovelopen sourcepredictive modelingprospectiveprototypereal time modelsimulationskillsstroke symptomsupport toolstooluser centered design
项目摘要
Project Summary/Abstract
Approximately 30,000 Americans suffer an aneurysmal subarachnoid hemorrhage (SAH) each year, at a mean
age in the mid-50s leading to many years of lost productivity. Delayed cerebral ischemia (DCI) occurs in every
fifth patient with SAH with onset between 3-7 days after aneurysm rupture, and is the leading cause of
morbidity. Identifying the onset of DCI is challenging even though patients are closely monitored in intensive
care units, and too often DCI is only recognized in retrospect. There are several reasons for this: (1) cerebral
ischemia results in loss of function and is not passively observable in a neurologically injured patient, (2) can
be mistaken for mimics such as seizure or delirium and delay diagnosis, (3) confirmatory testing is resource
heavy and carries potential risk which necessitates surpassing a high threshold of suspicion. Existing DCI
prediction models do not offer the necessary timeliness nor precision. Improving timeliness and precision of
DCI prediction would enable interventions to prevent strokes in patients with SAH as well as reduce
overly aggressive treatment. Leveraging the impact that the inflammatory pathomechanism of DCI has on
systemic physiology, we created an artificial intelligence (AI) risk score for DCI using features derived from
universally available vital signs that updates with new information. In a pseudo-prospective experiment on data
from external institutions, this risk score uniquely met the criteria for an ideal situational monitor that does not
yet exist: continuous, non-invasive, independent of pretest probability, operator-independent, quantitative, and
timely (12 hours before clinical diagnosis). The World Health Organization standard of ethics for AI in
healthcare decrees that algorithms should be tested rigorously in the setting in which the technology will be
used, and ensure that it meets standards of safety and efficacy. The risks of an untested AI based clinical
decision support are misinterpretation and over-trusting with harm to patients at worst, and inconsequence at
best. This proposal encompasses the necessary steps to translate this promising model into a tool that can be
integrated into clinical practice. In Aim 1, we will perform a Silent Validation and Simulation Study to evaluate
the accuracy and acceptance of this novel AI technology in a realistic clinical setting. In Aim 2, we will use
Contextual Design methodology for user-centered participatory design and rapid agile prototyping to refine the
optimal implementation in clinician workflow. In Aim 3, we will produce an open standards-based interoperable
architecture that will be plug and play for implementation at external institutions. The translation of a DCI risk
model into a continuous monitor fills an important gap in the management of patients with SAH, and an open
standards architecture enables affordable and rapidly achievable dissemination of this novel technology, while
providing an essential validation for the standards community.
项目摘要/摘要
每年约有30,000名美国人患动脉瘤性蛛网膜下腔出血(SAH)
50年代中期的年龄导致生产力失去多年。延迟的大脑缺血(DCI)发生在每个
第五名SAH患者在动脉瘤破裂后3-7天之间发病,是主要原因
发病率。即使患者受到密集监测
护理单位,而DCI经常仅在回顾中得到认可。这样的原因有几个:(1)大脑
缺血导致功能丧失,并且在神经损伤的患者中无法被动观察,(2)可以
被误认为模仿,例如癫痫发作或ir妄和延迟诊断,(3)确认性测试是资源
重型和潜在的风险需要超过高度怀疑的阈值。现有DCI
预测模型没有提供必要的及时性或精确度。提高及时性和精度
DCI预测将使干预措施可以防止SAH患者的中风,并减少
过于积极的治疗。利用DCI的炎症性致病机理对
系统生理学,我们使用从
普遍可用的生命体征,以新信息更新。在伪培训实验中
从外部机构中,此风险分数独特地符合理想情况监视器的标准
但存在:连续的,无创的,独立于预测试概率,独立于操作员,定量和
及时(临床诊断前12小时)。世界卫生组织的AI道德标准
医疗保健法令,应在技术将在该技术的情况下进行严格测试算法
使用并确保它符合安全和功效的标准。未经测试的AI临床的风险
决策支持是误解和过度怀念对最坏的患者的伤害,而无关紧要
最好的。该建议涵盖了将这种有前途的模型转化为一个可以是的工具的必要步骤
整合到临床实践中。在AIM 1中,我们将进行无声验证和模拟研究以评估
在现实的临床环境中,这种新型AI技术的准确性和接受。在AIM 2中,我们将使用
以用户为中心的参与式设计和快速敏捷原型制作的上下文设计方法,以完善
在临床医生工作流程中的最佳实施。在AIM 3中,我们将产生基于公开标准的互操作性
将在外部机构实施的插件。 DCI风险的翻译
连续监视器中的模型填补了SAH患者管理的重要空白,开放
标准体系结构可以负担得起且可以快速实现这一新技术的传播,而
为标准社区提供基本验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soojin Park其他文献
Soojin Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soojin Park', 18)}}的其他基金
Machine Learning to Optimize Management of Acute Hydrocephalus
机器学习优化急性脑积水的治疗
- 批准号:
10639454 - 财政年份:2023
- 资助金额:
$ 63.66万 - 项目类别:
Machine Learning to Optimize Management of Acute Hydrocephalus Patients
机器学习优化急性脑积水患者的管理
- 批准号:
10057040 - 财政年份:2020
- 资助金额:
$ 63.66万 - 项目类别:
Neural representation of the geometry and functionality in a scene
场景中几何形状和功能的神经表示
- 批准号:
9006938 - 财政年份:2016
- 资助金额:
$ 63.66万 - 项目类别:
Neural representation of the geometry and functionality in a scene
场景中几何形状和功能的神经表示
- 批准号:
9245696 - 财政年份:2016
- 资助金额:
$ 63.66万 - 项目类别:
Multiparametric Prediction of Vasospasm after Subarachnoid Hemorrhage
蛛网膜下腔出血后血管痉挛的多参数预测
- 批准号:
9044336 - 财政年份:2015
- 资助金额:
$ 63.66万 - 项目类别:
相似国自然基金
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
晶状体mtDNA氧化损伤修复与线粒体自噬的空间差异及其调控干预在年龄相关性白内障发病中的作用
- 批准号:82171038
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
FoxO3a通路抑制在年龄相关性白内障发病机制中的调控作用
- 批准号:82070942
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
肠道微生态参与年龄相关性黄斑变性的发病机制及固本清目方的干预作用
- 批准号:81973912
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
ODRP泛素化经LECs外泌体释放和自噬降解调控年龄相关性白内障的发病
- 批准号:81974129
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
相似海外基金
Potential of tissue kallikreins as therapeutic targets for neuropsychiatric lupus
组织激肽释放酶作为神经精神狼疮治疗靶点的潜力
- 批准号:
10667764 - 财政年份:2023
- 资助金额:
$ 63.66万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 63.66万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 63.66万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 63.66万 - 项目类别:
Digital monitoring of autonomic activity to detect empathy loss in behavioral variant frontotemporal dementia
对自主活动进行数字监测以检测行为变异型额颞叶痴呆的同理心丧失
- 批准号:
10722938 - 财政年份:2023
- 资助金额:
$ 63.66万 - 项目类别: