Ion signaling, cell transitions, and organ scaling during fin regeneration
鳍再生过程中的离子信号、细胞转变和器官缩放
基本信息
- 批准号:10639668
- 负责人:
- 金额:$ 41.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AdultAnatomyApoptosisBiological ProcessBone DiseasesCalcineurinCell CycleCell LineageCell membraneCellsCongenital AbnormalityDevelopmentDevelopmental BiologyDistalEctopic ExpressionExhibitsFibroblastsGenesGeneticGenetic EpistasisGenetic TranscriptionGrowthGrowth FactorHomeostasisHumanImageIn SituIndividualInjuryIonsKineticsLeadLinkMalignant NeoplasmsMeasurementMesenchymeModelingMolecularMutateMutationNatural regenerationNatureOrganOrgan SizeOutputPPP3CA genePatternPhasePhenotypePositioning AttributePotassium ChannelProcessRegenerative MedicineReporterReporter GenesResearchSecond Messenger SystemsShapesSignal TransductionSystemTestingTranscriptTransgenic OrganismsTransplantationVoltage-Gated Potassium ChannelZebrafishbioelectricitybiophysical propertiesblastemacandidate identificationcell behaviorexperimental studygain of functionhuman diseaseloss of functionmigrationmutantnovelorgan regenerationorgan repairpharmacologicprogenitorregenerativeresearch studyrestorationrestraintsingle-cell RNA sequencingskeletal regenerationsmall molecule inhibitorspatiotemporaltissue repairtranscriptome sequencingtranscriptomicstumorvoltage
项目摘要
PROJECT SUMMARY
Organs “know” when and how to stop growing to arrive at the correct size and shape. Disruption of organ size
control mechanisms leads to congenital abnormalities, poor organ homeostasis and tissue repair, and tumors.
Exemplifying this fundamental mystery, adult zebrafish fins perfectly regenerate to their original size and shape
regardless of injury extent. Therefore, zebrafish fin regeneration is a compelling and tractable system to
interrogate “organ scaling” mechanisms. Bioelectricity, or ion flows across cell membranes, is long-associated
with both organ size control and regeneration. However, links between ion signaling and their effectors to
specific cell behaviors determining organ size are limited. Perturbed ion signaling, notably by elevated voltage-
gated K+ channel activity and inhibited Ca2+-dependent calcineurin signaling, leads to dramatic overgrowth of
regenerating zebrafish fins. A distal fibroblast-lineage pool of "niche" cells within the fin's regenerative
blastema sustains fin outgrowth. The niche progressively depletes as outgrowth slows, likely by net re-
differentiation to a non-growth promoting state. We recently discovered the classic longfint2 mutant phenotype
is caused by ectopic expression of the Kcnh2a potassium channel within the fibroblast/niche lineage. Ectopic
Kcnh2a disrupts orderly niche depletion, thereby prolonging the outgrowth period. Kcnh2a likely blocks Ca2+-
calcineurin signaling with both acting uniquely during late stages of regeneration. We made a Ca2+ responsive
GCaMP6s transgenic reporter line and found distal fibroblast / niche cells exhibit dynamic Ca2+ fluxes. Our
single cell transcriptomics identified candidate upstream voltage-gated Ca2+ channels. We mutated the genes
encoding each channel, generating the first recessive model of dramatically elongated fins. We now
hypothesize niche-specific Ca2+ signaling, modulated by a cadre of Ca2+ channels, activates calcineurin to
promote niche-to-mesenchyme state transitions. We will pursue three Specific Aims to test this model and
identify mechanisms linking ion signaling to cell behaviors restoring fin size: 1) Characterize spatiotemporal
cytosolic Ca2+ dynamics and calcineurin activity in wildtype and long-finned zebrafish, 2) Determine how
voltage-gated Ca2+ channels modulate regenerating fin Ca2+ dynamics and fin outgrowth, and 3) Determine
how Ca2+ dynamics and calcineurin promote cell behaviors for fin growth cessation. Our proposed research will
associate voltage-gated Ca2+ channel-modulated intracellular Ca2+ dynamics, downstream calcineurin signaling,
and a novel “niche” state transition towards answering the classic mystery of robust organ scaling during fin
regeneration. Our study's broader impacts include identifying conceptual and mechanistic links of bioelectricity
to specific molecules and cell behaviors that determine organ size and form. Finally, studying robust adult
zebrafish skeletal regeneration will inform regenerative medicine approaches for human bone disease.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRYN STANKUNAS其他文献
KRYN STANKUNAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KRYN STANKUNAS', 18)}}的其他基金
Revisiting Polycomb Repression in Appendage Regeneration
重新审视附肢再生中的多梳抑制
- 批准号:
10742697 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
10115761 - 财政年份:2018
- 资助金额:
$ 41.08万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
9895229 - 财政年份:2018
- 资助金额:
$ 41.08万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8310027 - 财政年份:2010
- 资助金额:
$ 41.08万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8101217 - 财政年份:2010
- 资助金额:
$ 41.08万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8007510 - 财政年份:2010
- 资助金额:
$ 41.08万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
7531134 - 财政年份:2008
- 资助金额:
$ 41.08万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 41.08万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 41.08万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Studentship














{{item.name}}会员




