Chromatin Regulation of Heart Valve Development
心脏瓣膜发育的染色质调控
基本信息
- 批准号:9199582
- 负责人:
- 金额:$ 36.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-15 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAllelesBicuspidBindingBiochemicalBiological MarkersCell Culture TechniquesCellsChromatinChromatin Remodeling FactorComplexCongenital AbnormalityDefectDevelopmentDevelopmental ProcessDiagnosticDiseaseDisease ProgressionEmbryoEpigenetic ProcessEventFutureGene Expression RegulationGene TargetingGeneticGenetic ModelsGenetic TranscriptionGenomeGoalsGrowthHeartHeart ValvesHuman GeneticsLightLoxP-flanked alleleMesenchymalMesenchymeModelingMolecularMorphogenesisMusOutcomeOutcomes ResearchPathway interactionsPatternPhenotypePopulationProcessRegenerative MedicineRegulationRegulator GenesResearchRoleSignal PathwaySignal TransductionTechnologyTestingTissuesTranscriptTranscriptional RegulationTubeWNT Signaling Pathwayaortic valve disorderbasebicuspid aortic valvechromatin remodelingdesignempoweredhuman diseaseimprovedinterstitialloss of functionmouse modelneglectnovelnovel diagnosticsnovel therapeuticspreclinical trialpreventprogramspublic health relevancerepairedsemilunar valvetherapeutic targettranscription factortranscriptometranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Semilunar valve (SLV) diseases, including bicuspid aortic valves (BAV), are remarkably common and yet their genetic and developmental origins are poorly understood. Likewise, it remains unclear how disrupted embryonic valve development progresses into overt valve disease. Our long-term goal is to understand how gene regulation drives sequential developmental processes that ultimately produce complex, patterned valves and how these processes go awry in SLV disease. These gene regulatory events require transcription factors to interface with a chromatinized genome, suggesting that chromatin regulators are key components of SLV developmental networks. One important event is an endocardial-to-mesenchymal transformation (EMT) that occurs early in valve development to populate endocardial cushions (ECs), including the proximal outflow tract (pOFT) cushions that contribute tissue to SLVs. Our objectives are to 1) understand how chromatin remodeling integrates with cell signaling during EMT, and 2) determine mechanisms by which disruptions of valve development progress into diseased SLVs. Our central hypothesis is that endocardial Brg1-associated factor (BAF) chromatin remodeling complexes interact with Wnt signaling effectors to promote pOFT EMT. As a result, when endocardial Brg1 is deleted a subtype of OFT mesenchyme is depleted. Without these cells, cusp overgrowth and fusion results in thickened and malpatterned SLVs, including BAV. The rationale for our efforts is that defining chromatin remodeling roles during EMT will shed light on how SLV disease originates. Further, our mouse models of SLV disease will enable an understanding of the cellular and molecular progression of valve disease. Our specific aims are: 1) Determine the molecular networks that the BAF complex interfaces with to direct EMT and 2) Determine mechanisms of SLV disease progression in mice lacking endocardial- lineage Brg1. In pursuit of the first Aim, we will compare cellular and molecular pOFT defects seen in unpublished genetic models disrupting Brg1 and Wnt signaling. We will apply a transformative new TU-tagging technology to define dynamic, endocardial transcriptomes dependent on each pathway. Using new cell culture approaches, we will test biochemical interactions between BAF, Wnt effectors, and chromatin in EC cells. For the second Aim, we will use genetic lineage tracing to determine contributions of EMT-derived cells to distinct SLV regions, define interactions between SLV mesenchyme sub-populations, characterize misexpressed transcripts that may drive SLV disease progression, and describe a new mouse model of adult SLV disease of potential utility in preclinical trials. Our
proposed research uses novel technological and paradigmatic approaches to pursue unresolved questions of SLV development and disease. These contributions will be significant as they will shed light on the human genetics of SLV disease and inform regenerative medicine approaches. Our newly identified transcripts associated with a BAV model may represent biomarkers for disease diagnostics or therapeutic targets to prevent congenitally abnormal valves from becoming diseased.
描述(由申请人提供):半月瓣(SLV)疾病,包括双尖瓣主动脉瓣(BAV),非常常见,但其遗传和发育起源尚不清楚。同样,我们也不清楚被破坏的胚胎瓣膜发育是如何发展成显性瓣膜疾病的。我们的长期目标是了解基因调控如何驱动顺序发育过程,最终产生复杂的、有图案的瓣膜,以及这些过程如何在SLV疾病中出错。这些基因调控事件需要转录因子与染色质化的基因组相连接,这表明染色质调控因子是SLV发育网络的关键组成部分。一个重要的事件是发生在瓣膜发育早期的心内膜到间充质转化(EMT),以填充心内膜缓冲层(ECs),包括近端流出道(pOFT)缓冲层,为slv提供组织。我们的目标是1)了解EMT期间染色质重塑如何与细胞信号传导整合,2)确定瓣膜发育中断进展为病变slv的机制。我们的中心假设是心内膜brg1相关因子(BAF)染色质重塑复合物与Wnt信号效应物相互作用,促进pOFT EMT。因此,当心内膜Brg1被删除时,一种亚型的OFT间质被耗尽。没有这些细胞,尖端过度生长和融合导致增厚和畸形的slv,包括BAV。我们努力的基本原理是确定EMT期间染色质重塑的作用将阐明SLV疾病的起源。此外,我们的SLV疾病小鼠模型将有助于了解瓣膜疾病的细胞和分子进展。我们的具体目标是:1)确定BAF复合物与直接EMT相连接的分子网络;2)确定缺乏心内膜谱系Brg1的小鼠SLV疾病进展的机制。为了实现第一个目标,我们将比较未发表的遗传模型中发现的破坏Brg1和Wnt信号的细胞和分子pOFT缺陷。我们将应用一种变革性的新tu标记技术来定义依赖于每种途径的动态心内膜转录组。使用新的细胞培养方法,我们将测试EC细胞中BAF、Wnt效应物和染色质之间的生化相互作用。对于第二个目标,我们将使用遗传谱系追踪来确定emt衍生细胞对不同SLV区域的贡献,定义SLV间质亚群之间的相互作用,表征可能驱动SLV疾病进展的错误表达转录物,并描述一种新的成年SLV疾病小鼠模型,在临床前试验中具有潜在的用途。我们的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRYN STANKUNAS其他文献
KRYN STANKUNAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KRYN STANKUNAS', 18)}}的其他基金
Revisiting Polycomb Repression in Appendage Regeneration
重新审视附肢再生中的多梳抑制
- 批准号:
10742697 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Ion signaling, cell transitions, and organ scaling during fin regeneration
鳍再生过程中的离子信号、细胞转变和器官缩放
- 批准号:
10639668 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
10115761 - 财政年份:2018
- 资助金额:
$ 36.25万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
9895229 - 财政年份:2018
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8310027 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8101217 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8007510 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
7531134 - 财政年份:2008
- 资助金额:
$ 36.25万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:














{{item.name}}会员




