Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
基本信息
- 批准号:9895229
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-08 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdultBone DiseasesBone RegenerationCell LineageCellsComplexCongenital AbnormalityDistalGenetic TranscriptionGrowthHealthHomeostasisHumanIndividualInjuryIon ChannelLeadLong QT SyndromeMalignant NeoplasmsMesenchymeModelingMolecularMutateNatural regenerationNatureOrganOrgan SizePopulationPositioning AttributeProcessProteinsRegenerative MedicineScientistShapesSignal TransductionSiteSkeletonStem cellsTissuesWNT Signaling PathwayWidthZebrafishbonebone geometryexhaustfundamental researchhuman diseaseinsightnovelorgan regenerationprogramsresearch studyself-renewaltechnological innovationtherapeutic targettissue repairtranscription factortumor
项目摘要
PROJECT SUMMARY:
Organs and other complex tissues “know” when and how to stop growing to arrive at the correct size and
shape. Disruption of organ size control mechanisms can lead to congenital abnormalities, poor organ
homeostasis and tissue repair, and tumors. Adult zebrafish caudal fins, including their complex skeleton and
other tissues, perfectly regenerate to their original size and shape regardless of the nature or position of the
injury. Therefore, zebrafish fin regeneration provides a compelling and genetically tractable vertebrate model
to interrogate organ size control mechanisms. Prevailing models for robust fin size regeneration speculate that
fin cells maintain a multitude of “positional identities” that somehow instruct different degrees of outgrowth.
We propose a distinct and straightforward model that neatly explains how fin size and shape is restored without
invoking molecularly encoded positional information. A key cell population at the distal end of the
regenerating fin that we term the “niche” produces Wnt signals that promote fin outgrowth by sustaining
progenitor cells. We identify Dachsund transcription factors as novel niche markers and show that the niche
uniquely forms from intra-‐‑ray mesenchyme that populates the inside of the cylindrical, differentially sized,
and progressively tapered fin rays. We show that the niche, and therefore Wnt, steadily dissipates as
regeneration unfolds; once exhausted, growth stops. As such, regenerated fin size is dictated by the amount of
niche formed upon damage – which is simply dependent on the availability of intra-‐‑ray mesenchyme and
hence bone width at the damage site. This “transpositional scaling” model suggests that macro-‐‑scale fin size
and shape is determined by mesenchyme-‐‑niche state transitions and self-‐‑restoring bone geometry rather than
unique positional identities of individual cells. We will explore this paradigm and uncover underlying cell and
molecular mechanisms for size control during fin regeneration by three Specific Aims: 1. Define intra-‐‑ray
mesenchyme / distal niche lineage cell states, transitions, and fates, 2. Determine signaling and transcriptional
mechanisms maintaining niche state and function, and 3. Determine niche “countdown timer” mechanisms
using longfint2 zebrafish – which we show have a broken timer due to misexpression of the kcnh2a ion channel.
This insight suggests ion channels and Ca2+ signaling govern niche cell self-‐‑renewal. Our program will support
a potentially broadly applicable “transpositional scaling” concept with exemplary mechanisms for how organ
size and shape are determined by dynamic populations of tissue-‐‑resident niche cells. Our study will have
additional human health impacts since 1) understanding bone regeneration in zebrafish may inform
regenerative medicine approaches for human bone disease, and 2) kcnh2a is the zebrafish orthologue of kcnh2,
which is commonly mutated in long QT syndrome and encodes a protein that is a notorious therapeutic “off-‐‑
target”. Our paradigmatic and diverse technological innovations will open up new directions and inspire other
scientists, broadening our project’s impact on both fundamental research and regenerative medicine.
项目摘要:
器官和其他复杂组织“知道”何时以及如何停止生长以达到正确的尺寸和
形状。 器官大小控制机制的破坏可能导致先天性异常、器官不良
体内平衡和组织修复以及肿瘤。 成年斑马鱼尾鳍,包括其复杂的骨骼和
其他组织,无论其性质或位置如何,都能完美再生至其原始大小和形状
受伤。 因此,斑马鱼鳍的再生提供了一个令人信服且在遗传上易于处理的脊椎动物模型
询问器官大小控制机制。 稳健鳍尺寸再生的流行模型推测
鳍细胞维持着多种“位置特性”,以某种方式指导不同程度的生长。
我们提出了一个独特且直接的模型,它巧妙地解释了如何在不发生任何情况下恢复鳍的尺寸和形状。
调用分子编码的位置信息。 位于远端的关键细胞群
再生鳍,我们称之为“利基”,产生 Wnt 信号,通过维持来促进鳍的生长
祖细胞。 我们将腊肠犬转录因子确定为新颖的生态位标记,并表明该生态位
独特地由射线内间充质形成,填充在圆柱形内部,大小不同,
和逐渐变细的鳍条。 我们表明,利基市场以及 Wnt 会随着以下因素而稳步消散:
再生展开; 一旦耗尽,生长就会停止。 因此,再生翅片的尺寸取决于
损伤时形成的生态位 - 这仅取决于射线内间充质的可用性和
因此,损伤部位的骨宽度。 这种“换位缩放”模型表明,宏观尺度的鳍尺寸
并且形状是由间质-生态位状态转变和自我恢复骨几何形状决定的,而不是由
单个细胞的独特位置特征。 我们将探索这个范式并揭示底层细胞和
鳍再生过程中大小控制的分子机制,通过三个具体目标: 1. 定义射线内
间充质/远端生态位谱系细胞状态、转变和命运,2. 确定信号传导和转录
维持利基状态和功能的机制,以及 3. 确定利基“倒计时器”机制
使用 longfint2 斑马鱼——我们发现它的计时器由于 kcnh2a 离子通道的错误表达而损坏。
这一见解表明离子通道和 Ca2+ 信号传导控制微环境细胞的自我更新。 我们的计划将支持
一个潜在广泛适用的“换位缩放”概念,具有器官如何发挥作用的示范机制
大小和形状由组织驻留微环境细胞的动态群体决定。 我们的研究将有
其他人类健康影响,因为 1) 了解斑马鱼的骨再生可能会提供信息
人类骨疾病的再生医学方法,2) kcnh2a 是 kcnh2 的斑马鱼直系同源物,
它通常在长 QT 综合征中发生突变,并编码一种臭名昭著的治疗“非--”蛋白质
目标”。我们的范式和多样化的技术创新将开辟新的方向并激励其他人
科学家,扩大我们的项目对基础研究和再生医学的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRYN STANKUNAS其他文献
KRYN STANKUNAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KRYN STANKUNAS', 18)}}的其他基金
Revisiting Polycomb Repression in Appendage Regeneration
重新审视附肢再生中的多梳抑制
- 批准号:
10742697 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Ion signaling, cell transitions, and organ scaling during fin regeneration
鳍再生过程中的离子信号、细胞转变和器官缩放
- 批准号:
10639668 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
10115761 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
相似海外基金
Development of the preventive methods for sports-specific bone diseases in female athletes.
开发女运动员运动特异性骨疾病的预防方法。
- 批准号:
23K10643 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the role of aggrecan and type IX collagen in osteoarthritis and osteochondritis dissecans through in vivo studies of genetic bone diseases
通过遗传性骨病的体内研究确定聚集蛋白聚糖和 IX 型胶原蛋白在骨关节炎和剥脱性骨软骨炎中的作用
- 批准号:
MR/X001873/1 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Research Grant
SIK Activators to Treat PTH Pathway Bone Diseases
SIK 激活剂治疗 PTH 通路骨疾病
- 批准号:
10811083 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Functional analysis of a novel membrane transport factor in metabolic bone diseases
一种新型膜转运因子在代谢性骨疾病中的功能分析
- 批准号:
23K09507 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
17th Fellows Forum on Osteoporosis and Other Metabolic Bone Diseases
第十七届骨质疏松症和其他代谢性骨疾病研究员论坛
- 批准号:
10753107 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Regenerative therapeutics of bone diseases by means of in situ direct reprogramming
通过原位直接重编程进行骨疾病的再生治疗
- 批准号:
21K19577 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of dysfunction of osteocytes to reveal the targets of treatment in genetical bone diseases
分析骨细胞功能障碍揭示遗传性骨病治疗靶点
- 批准号:
21H02881 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
15th Fellows Forum on Osteoporosis and Metabolic Bone Diseases
第十五届骨质疏松症和代谢性骨病研究员论坛
- 批准号:
10318312 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Research for the development of methods to control age-related diseases and bone diseases
研究开发控制与年龄有关的疾病和骨疾病的方法
- 批准号:
20K20496 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Exploration of druggable targets for metabolic bone diseases using sensitive reporter systems and integrative proteogenomic approaches
使用敏感报告系统和综合蛋白质组学方法探索代谢性骨疾病的药物靶点
- 批准号:
19KK0234 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))














{{item.name}}会员




