Chromatin Regulation of Heart Valve Development
心脏瓣膜发育的染色质调控
基本信息
- 批准号:8632219
- 负责人:
- 金额:$ 36.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-15 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAllelesBicuspidBindingBiochemicalBiological MarkersCell Culture TechniquesCellsChromatinChromatin Remodeling FactorComplexDefectDevelopmentDevelopmental ProcessDiagnosticDiseaseDisease ProgressionEmbryoEpigenetic ProcessEventFutureGene Expression ProfileGene Expression RegulationGene TargetingGeneticGenetic ModelsGenomeGoalsGrowthHeartHeart ValvesHuman GeneticsLightMesenchymalMesenchymeModelingMolecularMorphogenesisMusOutcomeOutcomes ResearchPathway interactionsPatternPhenotypePopulationProcessRegenerative MedicineRegulationRegulator GenesResearchRoleSignal PathwaySignal TransductionTechnologyTestingTissuesTranscriptTranscriptional RegulationTubeWorkaortic valve disorderbasebicuspid aortic valvechromatin remodelingdesigndevelopmental geneticsempoweredhuman diseaseimprovedinterstitialloss of functionmouse modelneglectnovelnovel diagnosticspreclinical studypreventprogramspublic health relevancerepairedsemilunar valvetherapeutic targettranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY:
Semilunar valve (SLV) diseases, including bicuspid aortic valves (BAV), are remarkably common and yet their
genetic and developmental origins are poorly understood. Likewise, it remains unclear how disrupted
embryonic valve development progresses into overt valve disease. Our long-term goal is to understand how
gene regulation drives sequential developmental processes that ultimately produce complex, patterned valves
and how these processes go awry in SLV disease. These gene regulatory events require transcription factors
to interface with a chromatinized genome, suggesting that chromatin regulators are key components of SLV
developmental networks. One important event is an endocardial-to-mesenchymal transformation (EMT) that
occurs early in valve development to populate endocardial cushions (ECs), including the proximal outflow tract
(pOFT) cushions that contribute tissue to SLVs. Our objectives are to 1) understand how chromatin remodeling
integrates with cell signaling during EMT, and 2) determine mechanisms by which disruptions of valve
development progress into diseased SLVs. Our central hypothesis is that endocardial Brg1-associated factor
(BAF) chromatin remodeling complexes interact with Wnt signaling effectors to promote pOFT EMT. As a
result, when endocardial Brg1 is deleted a subtype of OFT mesenchyme is depleted. Without these cells, cusp
overgrowth and fusion results in thickened and malpatterned SLVs, including BAV. The rationale for our efforts
is that defining chromatin remodeling roles during EMT will shed light on how SLV disease originates. Further,
our mouse models of SLV disease will enable an understanding of the cellular and molecular progression of
valve disease. Our specific aims are: 1) Determine the molecular networks that the BAF complex interfaces
with to direct EMT and 2) Determine mechanisms of SLV disease progression in mice lacking endocardial-
lineage Brg1. In pursuit of the first Aim, we will compare cellular and molecular pOFT defects seen in
unpublished genetic models disrupting Brg1 and Wnt signaling. We will apply a transformative new TU-tagging
technology to define dynamic, endocardial transcriptomes dependent on each pathway. Using new cell culture
approaches, we will test biochemical interactions between BAF, Wnt effectors, and chromatin in EC cells. For
the second Aim, we will use genetic lineage tracing to determine contributions of EMT-derived cells to distinct
SLV regions, define interactions between SLV mesenchyme sub-populations, characterize misexpressed
transcripts that may drive SLV disease progression, and describe a new mouse model of adult SLV disease of
potential utility in preclinical trials. Our proposed research uses novel technological and paradigmatic
approaches to pursue unresolved questions of SLV development and disease. These contributions will be
significant as they will shed light on the human genetics of SLV disease and inform regenerative medicine
approaches. Our newly identified transcripts associated with a BAV model may represent biomarkers for
disease diagnostics or therapeutic targets to prevent congenitally abnormal valves from becoming diseased.
项目概要:
半月瓣(SLV)疾病,包括二叶式主动脉瓣(BAV),非常常见,但其
遗传和发育起源知之甚少。同样,目前仍不清楚如何破坏
胚胎瓣膜发育进展为显性瓣膜疾病。我们的长期目标是了解
基因调控驱动连续的发育过程,最终产生复杂的,有图案的瓣膜
以及这些过程在SLV疾病中是如何出错的。这些基因调控事件需要转录因子
与染色质化的基因组连接,这表明染色质调节因子是SLV的关键组成部分
发展网络。一个重要的事件是心内膜间质转化(EMT),
发生在瓣膜发育早期,以填充内膜垫(EC),包括近端流出道
(pOFT)为SLV提供组织的垫。我们的目标是:1)了解染色质重塑
与EMT期间的细胞信号传导整合,以及2)确定瓣膜破坏的机制,
发展成患病的SLV。我们的中心假设是内皮细胞Brg 1相关因子
(BAF)染色质重塑复合物与Wnt信号传导效应物相互作用以促进pOFT EMT。作为
结果,当内源性Brg1缺失时,OFT间充质的亚型被耗尽。如果没有这些细胞,
过度生长和融合导致包括BAV在内的SLV变厚和图案不良。我们努力的理由
在EMT中确定染色质重塑的作用将有助于阐明SLV疾病的起源。此外,本发明还
我们的SLV疾病小鼠模型将使我们能够理解SLV疾病的细胞和分子进展,
瓣膜病我们的具体目标是:1)确定BAF复合物界面的分子网络
指导EMT和2)确定缺乏内皮细胞的小鼠中SLV疾病进展的机制。
谱系Brg1.在追求第一个目标,我们将比较细胞和分子pOFT缺陷中看到的,
破坏Brg1和Wnt信号传导的未发表的遗传模型。我们将应用一种变革性的新TU标记
技术来定义动态的,依赖于每个途径的内源性转录组。使用新的细胞培养
方法中,我们将测试EC细胞中BAF,Wnt效应子和染色质之间的生物化学相互作用。为
第二个目标,我们将使用遗传谱系追踪来确定EMT衍生细胞对不同的细胞分化的贡献。
SLV区域,定义SLV间充质亚群之间的相互作用,表征错误表达
转录,可能驱动SLV疾病的进展,并描述了一种新的成年SLV疾病的小鼠模型,
在临床前试验中的潜在效用。我们提出的研究使用新的技术和范式
解决SLV发展和疾病的未解决问题的方法。这些贡献将是
意义重大,因为它们将揭示SLV疾病的人类遗传学,并为再生医学提供信息
接近。我们新发现的与BAV模型相关的转录本可能代表了BAV的生物标志物。
疾病诊断或治疗目标,以防止先天性异常瓣膜患病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRYN STANKUNAS其他文献
KRYN STANKUNAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KRYN STANKUNAS', 18)}}的其他基金
Revisiting Polycomb Repression in Appendage Regeneration
重新审视附肢再生中的多梳抑制
- 批准号:
10742697 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Ion signaling, cell transitions, and organ scaling during fin regeneration
鳍再生过程中的离子信号、细胞转变和器官缩放
- 批准号:
10639668 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
10115761 - 财政年份:2018
- 资助金额:
$ 36.25万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
9895229 - 财政年份:2018
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8310027 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8101217 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8007510 - 财政年份:2010
- 资助金额:
$ 36.25万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
7531134 - 财政年份:2008
- 资助金额:
$ 36.25万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 36.25万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 36.25万 - 项目类别:














{{item.name}}会员




