Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
基本信息
- 批准号:10115761
- 负责人:
- 金额:$ 41.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-08 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdultAllelesAnatomyAnimalsBone DiseasesBone RegenerationCRISPR/Cas technologyCell LineageCellsCodeComplexCongenital AbnormalityDistalDorsalEctopic ExpressionEpigenetic ProcessEpithelialFamilyGene Expression ProfileGene Expression ProfilingGeneticGenetic TranscriptionGeometryGrowthHealthHomeostasisHumanIndividualInjuryInstructionIon ChannelLeadLong QT SyndromeMalignant NeoplasmsMesenchymalMesenchymeModelingMolecularMosaicismMutateMutationNatural regenerationNatureOrganOrgan SizePhenotypePopulationPositioning AttributePotassium ChannelProcessProductionPropertyProteinsRegenerative MedicineResearchResolutionScientistShapesSignal TransductionSiteSkeletonSpecific qualifier valueSystemTestingTissuesTranslatingWNT Signaling PathwayWidthWorkZebrafishbonebone geometrycell typeexhaustexperimental studyfundamental researchhuman diseaseinsightnovelorgan regenerationpredictive modelingprogenitorprogramsrepairedresearch studyself-renewalsingle-cell RNA sequencingskeletal regenerationsmall moleculestem cellstechnological innovationtherapeutic targettissue repairtranscription factortumor
项目摘要
PROJECT SUMMARY:
Organs and other complex tissues “know” when and how to stop growing to arrive at the correct size and
shape. Disruption of organ size control mechanisms can lead to congenital abnormalities, poor organ
homeostasis and tissue repair, and tumors. Adult zebrafish caudal fins, including their complex skeleton and
other tissues, perfectly regenerate to their original size and shape regardless of the nature or position of the
injury. Therefore, zebrafish fin regeneration provides a compelling and genetically tractable vertebrate model
to interrogate organ size control mechanisms. Prevailing models for robust fin size regeneration speculate that
fin cells maintain a multitude of “positional identities” that somehow instruct different degrees of outgrowth.
We propose a distinct and straightforward model that neatly explains how fin size and shape is restored without
invoking molecularly encoded positional information. A key cell population at the distal end of the
regenerating fin that we term the “niche” produces Wnt signals that promote fin outgrowth by sustaining
progenitor cells. We identify Dachsund transcription factors as novel niche markers and show that the niche
uniquely forms from intra-‐‑ray mesenchyme that populates the inside of the cylindrical, differentially sized,
and progressively tapered fin rays. We show that the niche, and therefore Wnt, steadily dissipates as
regeneration unfolds; once exhausted, growth stops. As such, regenerated fin size is dictated by the amount of
niche formed upon damage – which is simply dependent on the availability of intra-‐‑ray mesenchyme and
hence bone width at the damage site. This “transpositional scaling” model suggests that macro-‐‑scale fin size
and shape is determined by mesenchyme-‐‑niche state transitions and self-‐‑restoring bone geometry rather than
unique positional identities of individual cells. We will explore this paradigm and uncover underlying cell and
molecular mechanisms for size control during fin regeneration by three Specific Aims: 1. Define intra-‐‑ray
mesenchyme / distal niche lineage cell states, transitions, and fates, 2. Determine signaling and transcriptional
mechanisms maintaining niche state and function, and 3. Determine niche “countdown timer” mechanisms
using longfint2 zebrafish – which we show have a broken timer due to misexpression of the kcnh2a ion channel.
This insight suggests ion channels and Ca2+ signaling govern niche cell self-‐‑renewal. Our program will support
a potentially broadly applicable “transpositional scaling” concept with exemplary mechanisms for how organ
size and shape are determined by dynamic populations of tissue-‐‑resident niche cells. Our study will have
additional human health impacts since 1) understanding bone regeneration in zebrafish may inform
regenerative medicine approaches for human bone disease, and 2) kcnh2a is the zebrafish orthologue of kcnh2,
which is commonly mutated in long QT syndrome and encodes a protein that is a notorious therapeutic “off-‐‑
target”. Our paradigmatic and diverse technological innovations will open up new directions and inspire other
scientists, broadening our project’s impact on both fundamental research and regenerative medicine.
项目摘要:
器官和其他复杂组织“知道”何时以及如何停止生长以达到正确的尺寸,并且
形状。器官尺寸控制机制的破坏会导致先天性异常,器官差
稳态和组织修复以及肿瘤。成年斑马鱼尾鳍,包括其复杂的骨骼和
其他时间,无论其最初的大小和形状,无论其最初的大小和形状如何
受伤。因此,斑马鱼鳍的再生提供了引人入胜且一般可牵引的脊椎动物模型
询问器官尺寸控制机制。稳健尺寸再生的盛行模型推测
鳍单元保持多种“位置身份”,这些身份以某种方式指导不同程度的产物。
我们提出了一个独特而直截了当的模型
调用分子编码的位置信息。关键细胞种群在远端
我们认为“利基”会产生Wnt信号的再生鳍,该信号通过维持来促进鳍的产物
祖细胞。我们将堤防转录因子识别为新的小众标记,并表明利基市场
来自射线内质的独特形式
并逐渐变细的鳍光线。我们证明了利基市场,因此稳定地消失了
再生展开;一旦筋疲力尽,生长就会停止。因此,再生的鳍尺寸由
损坏形成的利基 - 这仅取决于内质和雷内的可用性
因此,损坏部位的骨宽度。这种“换位缩放”模型表明宏观尺寸尺寸
形状由间充质-----------------------------------------------------》(-----
单个细胞的独特位置身份。我们将探索这个范式并发现潜在的细胞,并
通过三个特定目的在鳍上再生过程中尺寸控制的分子机制:1。定义液内
间充质/远端小裂谱系细胞状态,过渡和命运,2。确定信号传导和转录
维持利基状态和功能的机制,以及3。确定利基“倒数计时器”机制
使用Longfint2斑马鱼 - 由于KCNH2A离子通道的misexpression,我们显示的计时器损坏。
该洞察力表明离子通道和Ca2+信号传导控制生态裂细胞自我恢复。我们的计划将支持
一种潜在的广泛适用的“转置缩放”概念,具有示例性机制
大小和形状取决于组织 - 居民小众细胞的动态种群。我们的研究将有
自从1)了解斑马鱼的骨骼再生以来会产生其他影响
人骨病的再生医学方法,2)KCNH2A是KCNH2的斑马鱼直系同源物,
通常在长QT综合征中突变,并编码一种臭名昭著的治疗性的蛋白质。
目标”。我们的范式和潜水员的技术创新将打开新的方向并启发其他
科学家扩大了我们项目对基础研究和再生医学的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRYN STANKUNAS其他文献
KRYN STANKUNAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KRYN STANKUNAS', 18)}}的其他基金
Revisiting Polycomb Repression in Appendage Regeneration
重新审视附肢再生中的多梳抑制
- 批准号:
10742697 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Ion signaling, cell transitions, and organ scaling during fin regeneration
鳍再生过程中的离子信号、细胞转变和器官缩放
- 批准号:
10639668 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
9895229 - 财政年份:2018
- 资助金额:
$ 41.45万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8310027 - 财政年份:2010
- 资助金额:
$ 41.45万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8101217 - 财政年份:2010
- 资助金额:
$ 41.45万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8007510 - 财政年份:2010
- 资助金额:
$ 41.45万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
7531134 - 财政年份:2008
- 资助金额:
$ 41.45万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Optimization of CRISPR genome editor and its delivery strategy for C9orf72 frontotemporal dementia
C9orf72额颞叶痴呆的CRISPR基因组编辑器优化及其递送策略
- 批准号:
10746565 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Leveraging early-life microbes to prevent type 1 diabetes
利用生命早期微生物预防 1 型糖尿病
- 批准号:
10659611 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别: