Decoding mental concept identities using electrocorticography
使用皮层电图解码心理概念身份
基本信息
- 批准号:10652023
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-05 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAphasiaAreaArticulationBrainBrain NeoplasmsCharacteristicsChronicClinicalClinical TrialsCodeCommunicationComputer ModelsDataDevelopmentDevicesElectrocorticogramElectrophysiology (science)Eligibility DeterminationFoundationsFunctional Magnetic Resonance ImagingFutureGoalsImageImaging technologyImpairmentImplantIndividualInstitutionKnowledgeLanguageLanguage DisordersLeftLesionLocationMachine LearningMagnetoencephalographyMapsMethodsModalityModelingMotorNeural Network SimulationNon-aphasicOperative Surgical ProceduresOutcomePatient CarePatientsPatternPerformancePersonsPhasePopulationProductionPsyche structureRecoveryResearchRetrievalSemantic memorySemanticsSignal TransductionSolidSpecific qualifier valueSpecificitySpeechStrokeSystemTechnologyTestingTrainingTranslatingawakebrain basedbrain computer interfacebrain electrical activitybrain surgerycohortdeep neural networkdensitydesignexperimental studyinnovationmachine learning modelmodel developmentneuralneuroprosthesisnoveloperationphonologyportabilitypost strokepreservationstroke outcomestroke-induced aphasiatemporal measurement
项目摘要
PROJECT SUMMARY/ABSTRACT
Aphasia is a common and disabling outcome following stroke. Although some treatments are available in the
acute phase, people with chronic, severe deficits rarely have meaningful recovery. Frequently, these patients
have phonological or articulatory planning deficits, while their semantic functions are preserved. Because of
this, a novel treatment modality in these patients is a speech brain-computer interface (BCI) designed to
decode semantic activity. In this project we are developing a machine learning model to decode brain activity
to concept identities, to be used in such a device. We will first develop the model in patients with no language
deficits using invasive electrical recordings. During awake brain surgeries, we will place high-density
electrocorticography (ECoG) grids on prespecified brain locations corresponding to high-level semantic areas.
Patients will perform a semantic decision task, and the neural network model will be trained to predict concept
identities from the recorded ECoG activity using a semantic model developed by our lab. We will then
demonstrate the application of this model to people with aphasia by performing the same task using the
noninvasive magnetoencephalography (MEG) in people with severe aphasia. Demonstrating that this model
can be used to decode concept identities from brain activity, and that it is applicable to people with severe
aphasia, will open up a new avenue of treatment for this population.
项目总结/摘要
失语症是卒中后常见的致残性结局。虽然有些治疗方法在
在急性期,患有慢性严重缺陷的人很少有意义的恢复。通常,这些患者
语音或发音规划缺陷,而他们的语义功能被保留。因为
在这些患者中,一种新的治疗方式是语音脑机接口(BCI),
解码语义活动。在这个项目中,我们正在开发一个机器学习模型来解码大脑活动
to concept概念identities身份,to be used使用in such这样a device设备.我们将首先在没有语言的患者中开发模型
使用侵入性电记录的缺陷。在清醒状态下的脑部手术中,我们会将高密度的
皮层电图(ECoG)网格上预先指定的大脑位置对应于高层次的语义区。
患者将执行语义决策任务,神经网络模型将被训练以预测概念
使用我们实验室开发的语义模型从记录的ECoG活动中识别身份。然后我们将
通过使用相同的任务,演示该模型在失语症患者中的应用。
非侵入性脑磁图(MEG)在严重失语症的人。证明了这个模型
可以用来从大脑活动中解码概念身份,并且它适用于患有严重抑郁症的人。
失语症,将为这一人群开辟一条新的治疗途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William L. Gross其他文献
Mapping language from MEG beta power modulations during auditory and visual naming
在听觉和视觉命名过程中从 MEG beta 功率调制映射语言
- DOI:
10.1016/j.neuroimage.2020.117090 - 发表时间:
2020 - 期刊:
- 影响因子:5.7
- 作者:
Vahab Youssofzadeh;J. Stout;Candida Ustine;William L. Gross;L. Conant;Colin J. Humphries;J. Binder;M. Raghavan - 通讯作者:
M. Raghavan
Predicting memory decline from left temporal lobe epilepsy surgery using preoperative fMRI: a multicenter study
使用术前功能性磁共振成像(fMRI)预测左颞叶癫痫手术患者的记忆减退:一项多中心研究
- DOI:
10.1016/j.nicl.2025.103804 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:3.600
- 作者:
William L. Gross;Sara J. Swanson;Alexander I. Helfand;Sara B. Pillay;Colin J. Humphries;Manoj Raghavan;Wade M. Mueller;Chad E. Carlson;Lisa L. Conant;Robyn M. Busch;Mark Lowe;Madalina E. Tivarus;Daniel L. Drane;Monica Jacobs;Victoria L. Morgan;Jane B. Allendorfer;Jerzy P. Szaflarski;Leonardo Bonilha;Susan Bookheimer;Thomas Grabowski;Jeffrey R. Binder - 通讯作者:
Jeffrey R. Binder
William L. Gross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Neurocognitive Mechanisms of Sentence Production Impairment in Aphasia
失语症句子产生障碍的神经认知机制
- 批准号:
10735595 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Characterising and predicting apraxic deficits in patients with chronic aphasia caused by left hemisphere stroke
左半球卒中引起的慢性失语症患者的失语症特征和预测
- 批准号:
MR/W030268/1 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
Neural Mechanisms of Song vs Speech Production: Insights from Aphasia and Intracranial Recording
歌曲与言语产生的神经机制:失语症和颅内记录的见解
- 批准号:
10648716 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Computational modeling of language impairment and control in bilingual individuals with post-stroke aphasia and neurodegenerative disorders
中风后失语症和神经退行性疾病双语个体语言障碍和控制的计算模型
- 批准号:
10680656 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Toward Personalized Prognosis and Outcomes in Primary Progressive Aphasia
原发性进行性失语症的个性化预后和结果
- 批准号:
10634041 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Exercising language: Behavioral and neurophysiological changes after high-intensity exercise training in post-stroke aphasia.
运动语言:中风后失语症高强度运动训练后的行为和神经生理变化。
- 批准号:
10862024 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Transactional Success in the Texting Exchanges of People with Aphasia
失语症患者短信交流的交易成功
- 批准号:
10730224 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别: