Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
基本信息
- 批准号:10731582
- 负责人:
- 金额:$ 8.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-08 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:All of Us Research ProgramBayesian MethodClinicalComplexDataDiseaseGenerationsGeneticGenetic RiskGoalsHealth systemHigh Performance ComputingIndividualJointsMedical GeneticsMethodsModelingParticipantPopulationPopulation HeterogeneityPublishingResearch PersonnelStatistical MethodsTranslationsUnderrepresented PopulationsValidationWorkcohortcomputerized toolsdisorder riskflexibilitygenetic architecturegenome wide association studyimprovedmedical schoolsnovelparent grantrisk predictionrisk prediction modeltooltraining opportunitytrait
项目摘要
Project Summary
The ultimate goal of the parent grant is to develop rigorous, efficient, and robust integrative modeling
approaches for risk prediction across populations by capitalizing on the vast amount of publicly available
GWAS summary data, abundant functional annotations, and a growing number of studies with participants
from underrepresented populations. There are five specific aims in the parent grant, with the first three aims
developing three complementary approaches for cross-population risk predictions, including: (Aim 1) a
Bayesian approach (ME-Pred), along the line of our published work to incorporate either functional annotation
information or multiple trait information, that explicitly models joint effect sizes from multiple populations and
functional annotations; (Aim 2) an empirical Bayes approach (GWEB) that considers a more general and
flexible effect size distribution and statistical inference that does not need a validation cohort for tuning some
model parameters; and (Aim 3) a fast and robust Bayesian nonparametric method (SDPR) that is highly
adaptive to different genetic architectures and is computationally efficient. Aim 4 and Aim 5 of the parent grant
focus on implementation and applications of the developed tools to a number of studies, including the
Generations Project jointly initiated by the Yale School of Medicine and the Yale New Haven Health System.
We have assembled a team of investigators with expertise in statistical genetics, medical genetics, and high-
performance computing to develop, implement, evaluate, and disseminate the proposed methods. For this
diversity supplement project, we will consider risk prediction in admixed individuals, a topic related to but
covered by the parent grant. In addition, we will consider the applications of our methods to evaluate disease
risk for participants in the All of Us Research Program with a substantial number of underrepresented
individuals where methods tailored for admixed subjects may provide significantly improved predictions. This
supplement will not only provide an excellent training opportunity, but will also develop new tools for disease
risk predictions.
项目概要
家长资助的最终目标是开发严格、高效、稳健的集成模型
通过利用大量公开信息来预测跨人群风险的方法
GWAS汇总数据、丰富的功能注释以及越来越多的参与者研究
来自代表性不足的人群。家长补助金有五个具体目标,其中前三个目标
开发三种互补的跨人群风险预测方法,包括:(目标 1)a
贝叶斯方法 (ME-Pred),沿着我们已发表的作品的思路,合并任一功能注释
信息或多性状信息,明确模拟来自多个群体的联合效应大小,并且
功能注释; (目标 2)一种经验贝叶斯方法(GWEB),它考虑了更一般和
灵活的效应大小分布和统计推断,不需要验证队列来调整某些
模型参数; (目标 3) 一种快速且稳健的贝叶斯非参数方法 (SDPR)
适应不同的遗传结构并且计算效率高。家长补助金的目标 4 和目标 5
重点关注已开发工具在多项研究中的实施和应用,包括
世代项目由耶鲁大学医学院和耶鲁纽黑文卫生系统联合发起。
我们组建了一支在统计遗传学、医学遗传学和高科技领域拥有专业知识的研究人员团队。
性能计算来开发、实施、评估和传播所提出的方法。为了这
多样性补充项目,我们将考虑混合个体的风险预测,这是一个与但相关的主题
由家长补助金覆盖。此外,我们将考虑应用我们的方法来评估疾病
“我们所有人研究计划”的参与者面临着大量代表性不足的风险
为混合受试者量身定制的方法可能会提供显着改进的预测。这
补充剂不仅将提供绝佳的培训机会,还将开发针对疾病的新工具
风险预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONGYU ZHAO其他文献
HONGYU ZHAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HONGYU ZHAO', 18)}}的其他基金
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10662188 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10391800 - 财政年份:2022
- 资助金额:
$ 8.39万 - 项目类别:
Statistical Methods for Analyzing Birth Defects Cohorts
分析出生缺陷队列的统计方法
- 批准号:
10372041 - 财政年份:2021
- 资助金额:
$ 8.39万 - 项目类别:
Lost-of-function variants in the 1000 genomes data set and implications to GWAS
1000 个基因组数据集中的功能丧失变异及其对 GWAS 的影响
- 批准号:
7882977 - 财政年份:2010
- 资助金额:
$ 8.39万 - 项目类别:
Lost-of-function variants in the 1000 genomes data set and implications to GWAS
1000 个基因组数据集中的功能丧失变异及其对 GWAS 的影响
- 批准号:
8141451 - 财政年份:2010
- 资助金额:
$ 8.39万 - 项目类别:
International Symposium on Genome-Wide Association Studies
全基因组关联研究国际研讨会
- 批准号:
7193776 - 财政年份:2006
- 资助金额:
$ 8.39万 - 项目类别:
相似海外基金
Evaluation and construction of the Bayesian method to accelerate drug development
加速药物开发的贝叶斯方法的评估和构建
- 批准号:
23K11015 - 财政年份:2023
- 资助金额:
$ 8.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measurement of economic disparity using the Bayesian method
使用贝叶斯方法测量经济差距
- 批准号:
16K03589 - 财政年份:2016
- 资助金额:
$ 8.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9249077 - 财政年份:2016
- 资助金额:
$ 8.39万 - 项目类别:
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9035008 - 财政年份:2016
- 资助金额:
$ 8.39万 - 项目类别:
Improvement of McNemar test using Bayesian method
使用贝叶斯方法改进麦克尼马尔检验
- 批准号:
16K19249 - 财政年份:2016
- 资助金额:
$ 8.39万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Hierarchical Bayesian method for analyzing high polymorphic HLA genome sequence
分析高多态性 HLA 基因组序列的分层贝叶斯方法
- 批准号:
15H02775 - 财政年份:2015
- 资助金额:
$ 8.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Correcting Hazard Ratio Estimates for Outcome Misclassification: a Bayesian Method
纠正结果错误分类的风险比估计:贝叶斯方法
- 批准号:
327718 - 财政年份:2015
- 资助金额:
$ 8.39万 - 项目类别:
Operating Grants














{{item.name}}会员




