Deep Learning for Detecting the Early Anatomical Effects of Alzheimer's Disease
深度学习检测阿尔茨海默病的早期解剖学影响
基本信息
- 批准号:10658045
- 负责人:
- 金额:$ 19.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccountingAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAnatomic ModelsAnatomyAtrophicBehaviorCell DeathClinicalClinical ResearchClinical TrialsComputer softwareDarknessDataData SetDetectionDevelopmentDiagnosisDimensionsDiseaseEarly DiagnosisEnsureGenerationsHippocampusImageImpaired cognitionLabelLearningLeftLesionLocationMagnetic Resonance ImagingManualsMapsModalityModernizationNeuroanatomyNeurologicNoisePicture Archiving and Communication SystemPositron-Emission TomographyPredispositionProceduresProcessProgressive DiseasePropertyProtocols documentationResearchScanningScheduleSensitivity and SpecificitySeriesShapesSiteStructureSurrogate EndpointTechniquesTechnologyTestingThalamic structureTherapeutic InterventionTimeTrainingTreatment EfficacyValidationVariantVentricularclinical applicationclinical imagingdeep learningdeep neural networkdesigndisease classificationfollow-upimaging modalityimprovedlearning networklongitudinal analysisneuropathologysimulationtherapeutically effectivetoolusability
项目摘要
Project Summary
Longitudinal, within-subject approaches, have the potential to increase sensitivity and specificity, improving
the efficiency of clinical trials by requiring fewer subjects and providing potential surrogate endpoints to
assess therapeutic efficacy. There is also great potential that these tools will enable more sophisticated
anatomical modeling to better understand the temporal dynamics of progression. In Alzheimer’s Disease in
particular, early detection, prior to widespread and likely irreversible cell death, is crucial for the development
of effective therapeutic interventions. However, longitudinal tools have not yet been optimized for use in
clinical studies. Challenges include the reduction of noise across serial scans while providing each time point
equal relative weighting to avoid bias; adequately and appropriately accounting for atrophy; and handling
varying MRI contrast and distortion across time. In this proposal, we seek to improve longitudinal analysis in a
number of ways, leveraging the power of modern deep learning to increase accuracy, make it applicable to
any type of MRI contrast, radically reduce execution time, as well as make it usable in direct clinical
applications.
To achieve these aims we will employ newly developed image synthesis techniques to train networks to detect
small, “true” anatomical change hidden within a set of large-scale “MRI” distortions, that will capture
longitudinal differences in image acquisition such as gradient nonlinearities, field strength and B0 distortions,
and sequence parameter variations. The change-detection network will be cascaded with a deep registration
network that will learn to decompose the temporal warp into uninteresting MRI distortions and interesting
anatomical effects, then both warp fields and the aligned images will be provided to a segmentation network
to ensure no information is lost by the registration. The networks will learn to ignore MRI effects based on
their stereotypical behavior (e.g. the one-dimensionality of B0 distortions, the spatial smoothness of gradient
nonlinearities) and to detect the subtle anatomical changes such as increasing ventricular size or decreasing
hippocampal volume. The result will be a set of robust contrast-and-distortion-agnostic tools that highlight
potential disease effects for clinicians.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Fischl其他文献
Bruce Fischl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Fischl', 18)}}的其他基金
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 19.87万 - 项目类别:
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
- 批准号:
10664289 - 财政年份:2023
- 资助金额:
$ 19.87万 - 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
- 批准号:
10373401 - 财政年份:2021
- 资助金额:
$ 19.87万 - 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
- 批准号:
10525252 - 财政年份:2021
- 资助金额:
$ 19.87万 - 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
- 批准号:
10224850 - 财政年份:2020
- 资助金额:
$ 19.87万 - 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
- 批准号:
10038179 - 财政年份:2020
- 资助金额:
$ 19.87万 - 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
- 批准号:
10295766 - 财政年份:2018
- 资助金额:
$ 19.87万 - 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
- 批准号:
10063916 - 财政年份:2018
- 资助金额:
$ 19.87万 - 项目类别: