Algorithms for cross-scale integration and analysis

跨尺度集成和分析算法

基本信息

  • 批准号:
    10038179
  • 负责人:
  • 金额:
    $ 26.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Abstract - The vast majority of information that neuroscience has obtained about the microscopic structure of the human brain – the substrate for cognitive competencies and the specific locations of neuropathological processes – has been obtained by the analysis of ex vivo tissue. Historically this involves the decades (if not centuries) old procedure of cutting, staining, mounting and imaging under a microscope. The last two decades have seen stunning advances in imaging and analysis of the human brain. This include advances in microscopic (e.g. CLARITY1, SWITCH), mesoscopic (e.g., polarized light imaging, PLI), optical coherence tomography (OCT), RNA-seq and macroscopic imaging (e.g., MRI). While these techniques have generated huge amounts of new information regarding the structural, molecular, connectomic, genetic and transcriptional nature of the brain, they have thus far had little impact on in vivo analysis. In the same way, while we have made great progress in our ability to localize important brain regions in living subjects, these capabilities have had little impact in microscopy and neuropathology. In this project we seek to use our mesoscopic imaging and analysis tools to remove these barriers and facilitate the flow of information from microscopy to in vivo human studies, as well as in the reverse direction. Examples of the impact of these new abilities would be: using resting-state fMRI networks (rsFMRI) to guide the extraction of neuropathological blocks during autopsy to test network-based theories of various neurodegenerative disease or using predicted vascular distributions and densities to improve the laminar specificity of fMRI.
摘要:神经科学所获得的关于神经系统的绝大多数信息, 人类大脑的微观结构-认知能力的基质和 神经病理过程的特定位置-已经通过离体分析获得 组织.从历史上看,这涉及几十年(如果不是几百年)的切割,染色, 在显微镜下固定和成像。在过去的二十年里, 对人脑进行成像和分析。这包括微观方面的进展(例如, 介观的(例如,偏振光成像,PLI),光学相干断层扫描(OCT), RNA-seq和宏观成像(例如,MRI)。虽然这些技术已经产生了巨大的 大量关于结构、分子、连接组、遗传和 尽管它们与脑的转录性质无关,但迄今为止它们对体内分析几乎没有影响。在 同样,虽然我们在定位重要大脑区域的能力方面取得了很大进展, 在活体实验中,这些能力在显微镜和神经病理学中几乎没有影响。在这 项目我们寻求使用我们的介观成像和分析工具,以消除这些障碍, 促进信息从显微镜到体内人体研究的流动,以及相反的流动 方向这些新能力的影响的例子将是:使用静息态功能磁共振成像 网络(rsFMRI),以指导在尸检过程中提取神经病理块, 基于网络的各种神经退行性疾病的理论或使用预测的血管 分布和密度,以提高fMRI的层特异性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruce Fischl其他文献

Bruce Fischl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruce Fischl', 18)}}的其他基金

An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
  • 批准号:
    10664289
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
Deep Learning for Detecting the Early Anatomical Effects of Alzheimer's Disease
深度学习检测阿尔茨海默病的早期解剖学影响
  • 批准号:
    10658045
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
  • 批准号:
    10373401
  • 财政年份:
    2021
  • 资助金额:
    $ 26.21万
  • 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
  • 批准号:
    10525252
  • 财政年份:
    2021
  • 资助金额:
    $ 26.21万
  • 项目类别:
Deep Learning Algorithms for FreeSurfer
FreeSurfer 的深度学习算法
  • 批准号:
    10383677
  • 财政年份:
    2020
  • 资助金额:
    $ 26.21万
  • 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
  • 批准号:
    10224850
  • 财政年份:
    2020
  • 资助金额:
    $ 26.21万
  • 项目类别:
Deep Learning Algorithms for FreeSurfer
FreeSurfer 的深度学习算法
  • 批准号:
    10613469
  • 财政年份:
    2020
  • 资助金额:
    $ 26.21万
  • 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
  • 批准号:
    10295766
  • 财政年份:
    2018
  • 资助金额:
    $ 26.21万
  • 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
  • 批准号:
    10063916
  • 财政年份:
    2018
  • 资助金额:
    $ 26.21万
  • 项目类别:

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
  • 批准号:
    24K14615
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335800
  • 财政年份:
    2024
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
WTG: Diffusion of Research on Supporting Mathematics Achievement for Youth with Disabilities through Twitter Translational Visual Abstracts
WTG:通过 Twitter 翻译视觉摘要传播支持残疾青少年数学成就的研究
  • 批准号:
    2244734
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
The Impact of Emotional Experiences of Pride on Long-Term Goal Achievement Behaviors in Elite Athletes
骄傲的情感体验对优秀运动员长期目标实现行为的影响
  • 批准号:
    23K16740
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Meta-Analysis of the Instructional-Relational Model of Student Engagement and Math Achievement: A Moderation and Mediation Approach
学生参与度和数学成绩的教学关系模型的元分析:一种调节和中介方法
  • 批准号:
    2300738
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Improving maths achievement in children with speech, language, and communication needs through 'collaborative vocabulary teaching'
通过“协作词汇教学”提高有言语、语言和交流需求的儿童的数学成绩
  • 批准号:
    2890475
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Studentship
HSI Institutional Transformation Project: Retention and Achievement for Introductory STEM English Learners (RAISE)
HSI 机构转型项目:STEM 英语入门学习者的保留和成就 (RAISE)
  • 批准号:
    2225178
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了